Technology of supercomputer simulation of seismic wave fields in complicated media
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 4 (2015) no. 4, pp. 101-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considered computing technology solving problems related to the modeling of seismic wave propagation in inhomogeneous media typical of volcanic structures using supercomputer simulations in order to create systems of vibroseis monitoring for quake-prone objects. The physico-mathematical model of the magmatic volcano is constructed and software implementation on the basis of the known numerical method that effectively using the architecture of modern supercomputers equipped with GPU is developed. The parallel 2D and 3D algorithms and software for simulation of elastic wave propagation in a complicated medium (2D model is separation of original 3D model using various angles and planes) on basis of the explicit finite-difference scheme for the shifted grids and CFS-PML method of absorbing boundaries is developed. Scalability of algorithms is investigated. The application of the developed technology allows for much more efficient to carry out studies of the structure of the wave field due to the geometry of the internal boundaries and refinement of its kinematic and dynamic characteristics.
Keywords: GPU, monitoring, elastic waves, finite difference schemes, hybrid cluster.
Mots-clés : 3D simulation
@article{VYURV_2015_4_4_a5,
     author = {B. M. Glinskiy and V. N. Martynov and A. F. Sapetina},
     title = {Technology of supercomputer simulation of seismic wave fields in complicated media},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {101--116},
     year = {2015},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2015_4_4_a5/}
}
TY  - JOUR
AU  - B. M. Glinskiy
AU  - V. N. Martynov
AU  - A. F. Sapetina
TI  - Technology of supercomputer simulation of seismic wave fields in complicated media
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2015
SP  - 101
EP  - 116
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURV_2015_4_4_a5/
LA  - ru
ID  - VYURV_2015_4_4_a5
ER  - 
%0 Journal Article
%A B. M. Glinskiy
%A V. N. Martynov
%A A. F. Sapetina
%T Technology of supercomputer simulation of seismic wave fields in complicated media
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2015
%P 101-116
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/VYURV_2015_4_4_a5/
%G ru
%F VYURV_2015_4_4_a5
B. M. Glinskiy; V. N. Martynov; A. F. Sapetina. Technology of supercomputer simulation of seismic wave fields in complicated media. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 4 (2015) no. 4, pp. 101-116. http://geodesic.mathdoc.fr/item/VYURV_2015_4_4_a5/

[1] Laverov N.P., et al., Modern and Holocene volcanism in Russia, Science, M., 2005, 604 pp.

[2] Myasnikov A.V., Monitoring the State of the Magmatic Structures of Elbrus Volcano Based on Observation of Lithosphere Strains by observation of the Baksan Laser Interfrometer, dissert., Moscow, 2012

[3] Gurbanov A.G., Gazeev V.M., Bogatikov O.A. and etc., “Active volcano Elbrus and the stages of its geological history”, Modern methods of geological and geophysical monitoring of natural processes on the territory of Kabardino-Balkaria, 2005, 94–119

[4] Avdulov M.V., Koronovskiy N.V., “About the geological nature of Elbrus gravity anomaly”, The news of AS USSR, 1962, no. 9, 67–74

[5] Avdulov M.V., “About the geological nature of the Elbrus gravity minimum”, Moscow University Geology Bulletin, 1993, no. 3, 32–39

[6] Sobisevich A.L., Selected problems of Mathematical Geophysics and Volcanology and Geoecology, v. 1, IPE RAS, M., 2012, 512 pp.

[7] M. Bihn, T.A. Weiland, “Stable Discretization Scheme for the Simulation of Elastic Waves”, Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics (IMACS 1997), v. 2, 1997, 75–80

[8] Glinskiy B.M., Karavaev D.A., Kovalevskiy V.V., Martynov V.N., “Numerical modeling and experimental research of the «Karabetov Mountain» mud volcano by vibroseismic methods”, Numerical Methods and Programming, 11 (2010), 95–104

[9] Karavaev D.A., “Parallel implementation of wave field numerical modeling method in 3D models of inhomogeneous media”, Vestnik of Lobachevsky State University of Nizhni Novgorod, 1:6 (2009), 203–209

[10] F. Drossaert, A. Giannopoulos, “Complex frequency shifted convolution PML for FDTD modeling of elastic waves”, Wave Motion, 44 (2007), 593–604 | DOI | MR | Zbl

[11] D. Komatitsch, R. Martin, “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, GEOPHYSICS, 73:4 (2008), 51–61 | DOI

[12] F.D. Hastings, J.B. Schneider, S.L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation”, J. Acoust. Soc. Am., 100:5 (1996), 3061–3069 | DOI

[13] Sapetina A.F., “Numerical simulation of seismic wave propagation in a complicated medium on the hybrid cluster”, Problems of Strength and Plasticity, 76:4 (2014), 288–296