The computation of ranks of unit groups of integral group rings of finite groups
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 4 (2015) no. 1, pp. 71-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of central units (central invertible elements) of integral group rings is encountered to difficult calculations almost everywhere, both in the case of finding of individual central unitand in the case of describing of group of central elements. By virtue of torsion part of centralunit group is trivial (up to sign those are elements of center group) it is more interesting to finddata about torsion free part that is direct product infinite cyclic groups. The number of suchinfinite factors is the rank of central unit group. Therefore the ranks of central unit groups ofintegral group rings of finite groups are the very important characteristic those groups. So thatthe computation ranks of central unit groups has big interest for study of central unit groups. Inthe paper we point out the formulas for computation of ranks in general case and some importantparticular cases. On the base of those formulas we compute the ranks in quite large ranges. Weused computer algebra system GAP. The results are shown on tables and graph.
Keywords: group character, central unit, rank of Abelian group, system GAP.
@article{VYURV_2015_4_1_a6,
     author = {R. Zh. Aleev and N. A. Tsybina},
     title = {The computation of ranks of unit groups of integral group rings of finite groups},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {71--85},
     year = {2015},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2015_4_1_a6/}
}
TY  - JOUR
AU  - R. Zh. Aleev
AU  - N. A. Tsybina
TI  - The computation of ranks of unit groups of integral group rings of finite groups
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2015
SP  - 71
EP  - 85
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2015_4_1_a6/
LA  - ru
ID  - VYURV_2015_4_1_a6
ER  - 
%0 Journal Article
%A R. Zh. Aleev
%A N. A. Tsybina
%T The computation of ranks of unit groups of integral group rings of finite groups
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2015
%P 71-85
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2015_4_1_a6/
%G ru
%F VYURV_2015_4_1_a6
R. Zh. Aleev; N. A. Tsybina. The computation of ranks of unit groups of integral group rings of finite groups. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 4 (2015) no. 1, pp. 71-85. http://geodesic.mathdoc.fr/item/VYURV_2015_4_1_a6/

[1] Aleev R.Zh., “The theory of central units of integral goup rings of groups $PSL_{2}(2^{n})$”, Combinat. i vychislit. metody v matem., OmGU, Omsk, 1999, 1–19

[2] Aleev R.Zh., Central units of integral group rings of finite groups, diss. d-ra fis.-mat. nauk, Chelyabinsk, 2000, 355 pp.

[3] Aleev R.Zh., Ishechkina N.B., “A Theory of Central Unit Groups of Integral Group Rings of Groups $Sz(q)$”, Proccedings of the Steklov Institute of Mathematics, 7, no. 2, MAIK «Nauka/Interperiodica», 2001, 3–16 | MR

[4] Aleev R. Zh., Mitina O. V., “The decomposition theorem and ranks of central unit groups of integer group rings of groups $PGL(2, q)$, $q$ odd”, Siberian Electonic Mathematcal Reports, 5 (2008), 652–672 | MR | Zbl

[5] Aleev R.Zh., Peravina O.V., “The ranks central units of integral group rings of finite groups $PSL(2, q)$, $q$ odd”, Vest. ChelSU. ser. Mat. Mekh., 1999, no. 1(4), 5–15

[6] Vasilenko O.N., Number-theoretic Algorithms in Cryptography, AMS, 2007, 243 pp. | MR | Zbl

[7] Glukhov M.M., Kruglov I.A., Pichkur A.B., Cheremushkin A.V., Introduction to theoretical and numerical methods in cryptography, Lan’, Sankt-Peterburg, 2011, 400 pp.

[8] Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, v. XI, Interscience Publishers, a division of John Wiley Sons, New York-London, 1962, 703 pp. | MR | MR

[9] Shumakova E.O., “Central units in integral group rings for Frobenius metacyclic groups”, Siberian Electonic Mathematcal Reports, 5 (2008), 691–698 | MR | Zbl

[10] R.Ž. Aleev, “Higman's central unit theory, units of integral group rings of finite cyclic groups and Fibonacci numbers”, Intern. Journ. Algebra and Computations, 4 (1994), 309–358 | DOI | MR | Zbl

[11] R.A. Ferraz, “Simple components and central units in group rings”, Journal of Algebra, 279:1 (2004), 91–203 | DOI | MR

[12] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.7.4, , 2014 (data obrascheniya: 04.05.2014) http://www.gap-system.org

[13] J. Ritter, S.K. Sehgal, “Trivial units in RG”, Mathematical Proceedings of the Royal Irish Academy, v. 105A, 2005, 25–39 | DOI | MR | Zbl

[14] M. Schönert et al., GAP - Groups, Algorithms, and Programming, , Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschul, Aachen, Germany, 1997 (data obrascheniya: 14.06.2012) http://www.gap-system.org/Gap3