Mots-clés : data assimilation, Data Assimilation.
@article{VYURV_2014_3_4_a6,
author = {F. P. H\"arter and H. F. Campos Velho},
title = {Investigation of different topologies of neural networks for data assimilation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {96--108},
year = {2014},
volume = {3},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a6/}
}
TY - JOUR AU - F. P. Härter AU - H. F. Campos Velho TI - Investigation of different topologies of neural networks for data assimilation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2014 SP - 96 EP - 108 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a6/ LA - en ID - VYURV_2014_3_4_a6 ER -
%0 Journal Article %A F. P. Härter %A H. F. Campos Velho %T Investigation of different topologies of neural networks for data assimilation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2014 %P 96-108 %V 3 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a6/ %G en %F VYURV_2014_3_4_a6
F. P. Härter; H. F. Campos Velho. Investigation of different topologies of neural networks for data assimilation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 4, pp. 96-108. http://geodesic.mathdoc.fr/item/VYURV_2014_3_4_a6/
[1] P. Zannetti, Air Pollution Modeling, Computational Mechanics Publications, UK, 1990
[2] R. Daley, Atmospheric Data Analysis, Cambridge University Press, Cambridge, 1991
[3] A.F. Bennet, Inverse Methods in Physical Oceanography, Cambridge University Press, Cambridge, 1992
[4] A.G. Nowosad, A. Rios Neto, H.F. de Campos Velho, “Data Assimilation Using an Adaptative Kalman Filter and Laplace Transform”, Hybrid Methods in Engineering, 2:3 (2000), 291–310
[5] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York
[6] E. Lorenz, “Deterministic Nonperiodic Flow”, Journal of Atmospheric Sciences, 20 (1963), 130–141
[7] F. Girosi,T. Poggio, “Networks and the best approximation property”, Biological Cibernetic, 45 (1990), 169–176
[8] A. Jazwinsky, Stochastic Processes and Filtering Theory, Academic Press, New York–London, 1970