Efficient face detectionon Epiphany multicore processor
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 3, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is studied the possibility of usage of energy-efficient Epiphany microprocessor for solving actual applied problem of face detection at still image. The microprocessor is a multicore systemwith distributed memory, implemented in a single chip. Due to small die area the microprocessorhas significant hardware limitations (in particular it has only 32 kilobytes of memory per core)which limit the range of usable algorithms and complicate their software implementation. Commonface-detection algorithm based on local binary patterns (LBP) and cascading classifier was adaptedfor parallel implementation. It is shown that Epiphany microprocessor having 16 cores canoutperform single-core CPU of personal computer having the same clock rate by a factor of 2.5,while consuming only 0.5 watts of electric power.
Keywords: face detection, local binary patterns, parallel data processing, specialized processors, distributed memory.
@article{VYURV_2014_3_3_a0,
     author = {A. A. Sukhinov and G. B. Ostrobrod},
     title = {Efficient face detectionon {Epiphany} multicore processor},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--19},
     year = {2014},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_3_a0/}
}
TY  - JOUR
AU  - A. A. Sukhinov
AU  - G. B. Ostrobrod
TI  - Efficient face detectionon Epiphany multicore processor
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2014
SP  - 5
EP  - 19
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2014_3_3_a0/
LA  - ru
ID  - VYURV_2014_3_3_a0
ER  - 
%0 Journal Article
%A A. A. Sukhinov
%A G. B. Ostrobrod
%T Efficient face detectionon Epiphany multicore processor
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2014
%P 5-19
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2014_3_3_a0/
%G ru
%F VYURV_2014_3_3_a0
A. A. Sukhinov; G. B. Ostrobrod. Efficient face detectionon Epiphany multicore processor. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURV_2014_3_3_a0/

[1] M.S. Papamarcos, J.H. Patel, “A Low-Overhead Coherence Solution for Multiprocessors with Private Cache Memories”, Proceedings of the 11th Annual International Symposium on Computer Architecture ISCA'84, 1984, 348–354 | DOI

[2] J. Archibald, J. Baer, “Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation Model”, ACM Transactions on Computer Systems, 4:4 (1986), 273–298 | DOI

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, A. Singhania, “The Multikernel: A New OS Architecture for Scalable Multicore Systems”, Proceedings of the 22nd ACM Symposium on OS Principles (Big Sky, MT, USA), 2009, 29–44

[4] Face Detection Using the Epiphany Multicore Processor, (data obrascheniya: 13.02.2014) http://www.adapteva.com/white-papers/face-detection-using-the-epiphany-multicore-processor/

[5] Parallela - Supercomputing for Everyone, (data obrascheniya: 13.02.2014) http://www.parallella.org/

[6] OpenCV, (data obrascheniya: 13.02.2014) http://opencv.org/

[7] Y.S. Abu-Mostafa, M. Magdon-Ismail, H.-T. Lin, Learning from Data, AMLBook, 2012, 213 pp.

[8] T. Ojala, M. Pietikäinen, D. Harwood, “Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions”, Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), v. 1, 1994, 582–585

[9] P. Viola, M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features”, Computer Vision and Pattern Recognition, 1 (2001), 511–518 | DOI

[10] D.P. Mitchell, A.N. Netravali, “Reconstruction Filters in Computer-Graphics”, ACM SIGGRAPH Computer Graphics, 22:4 (1988), 221–228 | DOI

[11] F.C. Crow, “Summed-Area Tables for Texture Mapping”, Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH'84, 1984, 207–212 | DOI