@article{VYURV_2014_3_2_a4,
author = {R. M. Miniakhmetov and E. O. Tsatsina},
title = {Twitter users popularity estimation using expert finding},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {63--76},
year = {2014},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a4/}
}
TY - JOUR AU - R. M. Miniakhmetov AU - E. O. Tsatsina TI - Twitter users popularity estimation using expert finding JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2014 SP - 63 EP - 76 VL - 3 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a4/ LA - ru ID - VYURV_2014_3_2_a4 ER -
%0 Journal Article %A R. M. Miniakhmetov %A E. O. Tsatsina %T Twitter users popularity estimation using expert finding %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2014 %P 63-76 %V 3 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a4/ %G ru %F VYURV_2014_3_2_a4
R. M. Miniakhmetov; E. O. Tsatsina. Twitter users popularity estimation using expert finding. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 2, pp. 63-76. http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a4/
[1] J. Zhang, J. Tang, J. Li, “Expert Finding in A Social Network”, Advances in Databases: Concepts, Systems and Applications, Lecture Notes in Computer Science, 4443, Springer, Heidelberg, 2007, 1066–1069 | DOI
[2] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, G. Vesci, “Choosing the Right Crowd: Expert Finding in Social Networks”, Proceedings of the 16th International Conference on Extending Database Technology (EDBT '13), 2013, 637–648 | DOI
[3] J. Zhang, J. Tang, L. Liu, J. Li, “A Mixture Model for Expert Finding”, Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD '08), Lecture Notes in Computer Science, 5012, Springer, Heidelberg, 2008, 466–478 | DOI
[4] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008, 496 pp.
[5] J. Ponte, W. Croft, “A Language Modeling Approach to Information Retrieval”, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '98), 1998, 275–281 | DOI
[6] D. Heimstra, “A Linguistically Motivated Probabilistic Model of Information Retrieval”, Proceedings of the Second European Conference on Research and Advanced Technology for Digital Libraries, 1998, 569–584
[7] H. Steck, “Item Popularity and Recommendation Accuracy”, Proceedings of the Second European Conference on Research and Advanced Technology for Digital Libraries (RecSys '11), 2011, 125–132 | DOI
[8] Y. Cha, B. Bin, C. Hsieh, J. Cho, “Incorporating Popularity in Topic Models for Social Network Analysis”, Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '13), 2013, 223–232 | DOI
[9] Twitter API Library for Python Documentation, (data obrascheniya: 24.04.2014) http://pythonhosted.org//tweepy/
[10] Twitter REST API Documentation, (accessed: 24.04.2014) https://dev.twitter.com/docs/api/1.1
[11] M. Stonebraker, G. Kemnitz, “The POSTGRES Next-generation Database Management System”, Communications of the ACM, 34:10 (1991), 78–92 | DOI
[12] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press, 1998, 432 pp.
[13] D.D. Yantsen, M.L. Zymbler, “A Representative Sampling Method for Parallel DBMS”, Parallel Computational Technologies (PCT'2014): Proceedings of the International Scientific Conference (April 1-3, 2014, Rostov-on-Don), Publishing of the South Ural State University, Chelyabinsk, 2014, 381 pp.
[14] C.S. Pan, “An Approach for Very Large Graph Partitioning by Means of Parallel DBMS”, Bulletin of the South Ural State University. Series “Computational Mathematics and Software Engineering”, 47(306):2 (2012), 127–132 | DOI
[15] Tracking the Most Popular Users of a Certain Microblogging/Social Network Tool «Twitaholic», (data obrascheniya: 24.04.2014) http://twitaholic.com/
[16] Machine Learning Library for Python Documentation “scikitlearn”, (data obrascheniya: 24.04.2014) http://scikit-learn.org/stable/documentation.html
[17] H. Zhu, E. Chen, H. Cao, “Finding Experts in Tag Based Knowledge Sharing Communities”, Proceedings of the 5th International Conference on Knowledge Science, Engineering and Management (KSEM '11), 2011, 183–195
[18] J. Han, J. Pei, Y. Yin, R. Mao, “Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach”, Data Mining and Knowledge Discovery, 8:1 (2004), 53–87 | DOI
[19] D. Blei, A. Ng, Y. Yin, M. Jordan, “Latent Dirichlet Allocation”, The Journal of Machine Learning Research, 3 (2003), 993–1022