On some variants of domain decomposition methods
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 2, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the algorithms for solving large sparse SLAEs arising from grid approximations of boundary value problems. The SLAEs and algorithms are not limited in asense of number of unknowns, computational nodes, processors and/or cores. This problem isreduced to a distributed variant of algebraic 3D-domain decomposition, in which no excessiveload of the root process is present, i.e. all MPI-processes, each of which corresponds to its ownsubdomain, are almost equal. The computational process consists of two main stages. The firststage is the automatic decomposition, based on the analysis of the matrix portrait and theformation of large-block representation of the original SLAE. The second stage implements aKrylov subspace iterative process with FGMRes (flexible generalized minimal residual method)using either exact or approximate inverse of diagonal blocks as a preconditioner. The methodsdescribed are implemented as a part of Krylov, a library of algebraic solvers. The paper presentssome features of current parallel implementation and estimates of resource usage. Efficiency ofthe developed algorithms is illustrated by solving several typical model problems with differentparameters and in different configurations of multiprocessor computer systems.
Keywords: domain decomposition methods, matrix graphs, parallel algorithms, grid equations, sparse linear algebraic systems.
@article{VYURV_2014_3_2_a0,
     author = {V. P. Il'in and D. V. Perevozkin},
     title = {On some variants of domain decomposition methods},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--19},
     year = {2014},
     volume = {3},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a0/}
}
TY  - JOUR
AU  - V. P. Il'in
AU  - D. V. Perevozkin
TI  - On some variants of domain decomposition methods
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2014
SP  - 5
EP  - 19
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a0/
LA  - ru
ID  - VYURV_2014_3_2_a0
ER  - 
%0 Journal Article
%A V. P. Il'in
%A D. V. Perevozkin
%T On some variants of domain decomposition methods
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2014
%P 5-19
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a0/
%G ru
%F VYURV_2014_3_2_a0
V. P. Il'in; D. V. Perevozkin. On some variants of domain decomposition methods. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 3 (2014) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURV_2014_3_2_a0/

[1] Domain Decomposition Methods, (data obrascheniya: 14.03.2012) http://ddm.org

[2] 22nd International Conference on Domain Decomposition Methods (DD22), (data obrascheniya: 31.11.2013) http://dd22.ics.usi.ch/

[3] Intel (R) Math Kernel Library from Intel, (data obrascheniya: 08.04.2014) http://software.intel.com/en-us/articles/intel-mkl/

[4] V.P. Il’in, Methods and Technologies of Finite Elements, ICM SBRAS Publishing, Novosibirsk, 2007, 371 pp.

[5] S. Pissanetski, Sparse Matrix Technology, Mir, Moscow, 1988, 305 pp.

[6] J.H. Bramble, J. Pasciak, J. Wang, J. Xu, “Convergence Estimates for Product Iterative Methods with Applications to Domain Decomposition”, Mathematics of Computation, 57:195 (1991), 1–21

[7] K. Berzh, Graph Theory and Its Applications, Foreign Literature Publishing, Moscow, 1962, 250 pp.

[8] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003, 528 pp.

[9] NKS-30T Cluster, (accessed: 12.02.2013) http://www2.sscc.ru/HKC-30T/HKC-30T.htm

[10] M.Yu. Andreeva, V.P. Il'in, E.A. Itskovich, “Two Solvers for Nonsymmetric SLAE”, Bulletin NCC, «Numerical Analysis» Series, 12 (2003), 1–16

[11] D.S. Butyugin, V.P. Il'in, D.V. Perevozkin, “Parallel SLAE Solution Methods for Distributed Memory Systems in Krylov Library”, Bulletin of the South Ural State University. Series “Computational Mathematics and Informatics”, 47:306 (2012), 5–19