@article{VYURV_2013_2_4_a7,
author = {M. M. Dyshaev and I. M. Sokolinskaya},
title = {Representation of trading signals based {Kaufman} adaptive moving average as a system of linear inequalities},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {103--108},
year = {2013},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a7/}
}
TY - JOUR AU - M. M. Dyshaev AU - I. M. Sokolinskaya TI - Representation of trading signals based Kaufman adaptive moving average as a system of linear inequalities JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2013 SP - 103 EP - 108 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a7/ LA - ru ID - VYURV_2013_2_4_a7 ER -
%0 Journal Article %A M. M. Dyshaev %A I. M. Sokolinskaya %T Representation of trading signals based Kaufman adaptive moving average as a system of linear inequalities %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2013 %P 103-108 %V 2 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a7/ %G ru %F VYURV_2013_2_4_a7
M. M. Dyshaev; I. M. Sokolinskaya. Representation of trading signals based Kaufman adaptive moving average as a system of linear inequalities. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 4, pp. 103-108. http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a7/
[1] S. N. Volodin, “Problemy rasprostraneniya algoritmicheskoy torgovli na krupneyshikh mirovykh birzhakh”, Informatcionno-analiticheskii zhurnal “Politicheskoe obrazovanie”, 2012 } {\tt http://www.lawinrussia.ru/node/252999
[2] Dzh. Tu, R Gonsales, Printcipy raspoznavaniia obrazov, Per. s angl., ed. Iu. I. Zhuravlyov, Mir, Moscow, 1978, 411 pp.
[3] I. I. Eremin, “Feierovskie metody silnoi otdelimosti vypuclykh poliedralnykh mnozhestv”, Izvestiia vuzov. Ser. Matematika, 2006, no. 12, 33–43
[4] A. V. Yershova, I. M. Sokolinskaya, “Parallel’nyy algoritm resheniya zadachi silnoy otdelimosti na osnove feyyerovskikh otobrazheniy”, Vychislitel’nyye metody i programmirovaniye: novyye vychislitel’nyye tekhnologii, 12:1 (2011), 423–434
[5] A. V. Yershova, I. M. Sokolinskaya, “O skhodimosti masshtabiruyemogo algoritma postroyeniya psevdoproyektsii na vypukloye zamknutoye mnozhestvo”, Vestnik YuzhnoUral’skogo gosudarstvennogo universiteta. Seriya: Matematicheskoye modelirovaniye i programmirovaniye, 37(254) (2011), 12–21
[6] A. V. Yershova, I. M. Sokolinskaya, “Issledovaniye ustoychivosti parallel’nogo algoritma resheniya zadachi sil’noy otdelimosti na baze feyyerovskikh otobrazheniy”, Vestnik YuzhnoUral’skogo gosudarstvennogo universiteta. Seriya: Matematicheskoye modelirovaniye i programmirovaniye, 18(277) (2012), 5–12
[7] P. J. Kaufman, Smarter Trading: Improving Performance in Changing Markets, McGraw-Hill, Inc., 1995, 257 pp.
[8] R. J. Hyndman, A. B. Koehler, J. K. Ord, R. D. Snyder, Forecasting with Exponential Smoothing. The State Space Approach, Springer, 2008, 360 pp.