Keywords: Monte Carlo method, parallelization, supercomputer.
@article{VYURV_2013_2_4_a5,
author = {M. A. Marchenko},
title = {Effective use of multicore coprocessors in supercomputer stochastic simulation of electron avalanches},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {80--93},
year = {2013},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a5/}
}
TY - JOUR AU - M. A. Marchenko TI - Effective use of multicore coprocessors in supercomputer stochastic simulation of electron avalanches JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2013 SP - 80 EP - 93 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a5/ LA - ru ID - VYURV_2013_2_4_a5 ER -
%0 Journal Article %A M. A. Marchenko %T Effective use of multicore coprocessors in supercomputer stochastic simulation of electron avalanches %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2013 %P 80-93 %V 2 %N 4 %U http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a5/ %G ru %F VYURV_2013_2_4_a5
M. A. Marchenko. Effective use of multicore coprocessors in supercomputer stochastic simulation of electron avalanches. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 4, pp. 80-93. http://geodesic.mathdoc.fr/item/VYURV_2013_2_4_a5/
[1] S. M. Ermakov, G. A. Mikhailov, Course of stochastic simulation, Nauka, Moscow, 1976, 320 pp.
[2] A. F. Akkerman, Simulation of trajectories of charged particles in medium, Fundamental and applied mathematics, Energoatomizdat, Moscow, 1991, 200 pp.
[3] G. J. M. Hagelaar, L. C. Pitchford, “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, Plasma Sources Sci. Technol, 14 (2005), 722–733
[4] Ju. D. Korolev, G. A. Mesyatc, Physics if impulse breakdown in gases, Nauka, Moscow, 1991, 224 pp.
[5] G. Z. Lotova, M. A. Marchenko, G. A. Mikhailov, et al., “Parallel realization of Monte Carlo method for modelling of electron avalanches in gases”, Izvestiya vyshyh uchebnyh zavedeniy, 2013
[6] Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, T. Takayanagi, “Sections for Collisions of Electrons and Photons with Nitrogen Molecules”, J. Phys. Chem. Ref. Data, 15:3 (1986), 985–1010
[7] A. Okhrimovskyy, A. Bogaerts, R. Gijbels, “Electron anisotropic scattering in gases: A formula for Monte Carlo simulations”, Phys. Rev. E., 65:037402 (1986), 1–4
[8] W. Sun, M. A. Morrison, W. A. Isaacs, W. K. Trail, D. T. Alle, R. J. Gulley, M. J. Brennan, S. J. Buckman, “Detailed theoretical and experimental analysis of low-energy electron-N2 scattering”, Phys. Rev. A., 52:2 (1995), 1229–1256
[9] H. Tagashira, Y. Sakai, S. Sakamoto, “The development of electron avalanches in argon at high E/N values. II. Boltzmann equation analysis”, J. Phys. D: Appl. Phys., 10 (1977), 1051
[10] M. E. Zhukovskiy, R. V. Uskov, “Mathematical modeling of radiative electron emission using hybrid supercomputers”, Numerical methods and programming, 13:1 (2012), 271-279
[11] M. A. Marchenko, G. A. Mikhailov, “Distributed computing by the Monte Carlo method”, Automation and Remote Control, 68:5 (2007), 888-900
[12] M. A. Marchenko, “PARMONC - A Software Library for Massively Parallel Stochastic Simulation”, LNCS, 6873 (2011), 302-315
[13] M. A. Marchenko, G. A. Mikhailov, Page of PARMONC on the web site of Siberian Supercomputer Center } {\tt http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.htm
[14] J. Jeffers, J. Reinders, Intel Xeon Phi Coprocessor High - Performance Programming, Elsevier, 2013, 432 pp.
[15] V. Lisovskiy, J. P. Booth, K. Landry, D. Douai, V. Cassagne, V. Yegorenko, “Electron drift velocity in argon, nitrogen, hydrogen, oxygen and ammonia in strong electric fields determined from rf breakdown curves”, J. Phys. D: Appl. Phys., 39 (2006), 660–665
[16] J. Dutton, “A survey on electron swarm data”, J. Phys. Chem. Ref. Data, 4:3 (1975), 577–851