Parallel algebraic solvers library Krylov
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 92-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Article describes functional capabilities and software implementation peculiarities of parallel algorithms library Krylov, which is oriented on the solution of large systems of linear algebraic equations with sparse symmetric and unsymmetric matrices (positive definite and semi-definite) obtained from discrete approximations of multidimensional boundary value problems for partial differential equations on unstructured meshes. The library includes two-level iterative methods in Krylov subspaces; preconditioning of the latter is based on the balanced decomposition of the computational domain with variable sizes of subdomain overlapping and different boundary conditions on interfacing boundaries. Program implementations use typical compressed sparse matrix data formats. Results of numerical experiments are presented which demonstrate the efficiency of parallelization for typical ill-conditioned problems.
Keywords: preconditioned iterative algorithms; Krylov subspaces; domain decomposition methods; sparse algebraic systems; numerical experiments.
@article{VYURV_2013_2_3_a6,
     author = {D. S. Butyugin and Ya. L. Guryeva and V. P. Il'in and D. V. Perevozkin and A. V. Petukhov and I. N. Skopin},
     title = {Parallel algebraic solvers library {Krylov}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {92--105},
     year = {2013},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a6/}
}
TY  - JOUR
AU  - D. S. Butyugin
AU  - Ya. L. Guryeva
AU  - V. P. Il'in
AU  - D. V. Perevozkin
AU  - A. V. Petukhov
AU  - I. N. Skopin
TI  - Parallel algebraic solvers library Krylov
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 92
EP  - 105
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a6/
LA  - ru
ID  - VYURV_2013_2_3_a6
ER  - 
%0 Journal Article
%A D. S. Butyugin
%A Ya. L. Guryeva
%A V. P. Il'in
%A D. V. Perevozkin
%A A. V. Petukhov
%A I. N. Skopin
%T Parallel algebraic solvers library Krylov
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 92-105
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a6/
%G ru
%F VYURV_2013_2_3_a6
D. S. Butyugin; Ya. L. Guryeva; V. P. Il'in; D. V. Perevozkin; A. V. Petukhov; I. N. Skopin. Parallel algebraic solvers library Krylov. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 92-105. http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a6/

[1] D. S. Butyugin, V. P. Il’in, Y. A. Itskovich, et al., “Krylov: library of algorithms and programs for SLAEs solution”, Modern problems of mathematical simulation. Mathematical simulation, numerical methods and program complexes. All-Russian young scientists schools proceedings, Publishing of South Federal University, Rostov-na-Donu, 2009, 110–128

[2] D. S. Butyugin, “Methods of parallel SLAEs solution on the systems with distributed memory in Krylov library”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 2012, no. 47(306), 5–19

[3] V. P. Il’in, Methods of finite differences and finite volumes for elliptic equations, ICM SBRAS Publishing, Novosibirsk, 2001, 345 pp.

[4] V. P. Il’in, Methods and technologies of finite elements, ICM SBRAS Publishing, Novosibirsk, 2007, 371 pp.

[5] V. P. Il’in, “Parallel methods and technologies of domain decomposition”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 2012, no. 46(305), 31–44

[6] V. P. Il’in, D. V. Knysh, “Parallel decomposition methods in trace spaces”, Computational methods and programming, 12:1 (2011), 100–109

[7] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003, 528 pp.

[8] Intel Math Kernel Library. Reference Manual } {\tt http://software.intel.com/.../index.htm

[9] V. P. Il’in, “Bi-conjugate directions methods in Krylov subspaces”, Syberian Journal of Industrial Mathematics, 11:4(36) (2008), 47–60

[10] N. Bell, M. Garland, Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph Computations } {\tt http://cusp-library.googlecode.com

[11] PETSc: Home Page } {\tt http://www.mcs.anl.gov/petsc/

[12] Hypre } {\tt http://acts.nersc.gov/hypre/

[13] Yousef Saad – Software } {\tt http://www-users.cs.umn.edu/~saad/software/

[14] Klaster HKC-30T

[15] R. Nabben, C. Vuik, “A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners”, Numerical Linear Algebra with Applications, 15:4 (2008), 355–372