About parallelization of solving of boundary value problems on quasistructured grids
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 63-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Technological components of boundary problems solution on offered quasi-structured grids of special kind is considered. The feature of these grids is that both macrogrid (coarse grid) in a whole domain and subgrids (local grids) in subdomains are structured and rectangular, it provides efficient structure of data and effective using of computational algorithms. At the same time, resulting quasi-structured grid is adaptive to irregularities within a domain and to complicated shape of domain boundary. It is essential that subgrids can be unmatched. One variant of domain decomposition methods for solving boundary problems is offered, this one is based on separate approximation of boundary problem on the interface and within the subdomains. In order to balance utilization of processors whole set of subdomains is divided into unions (groups) of subdomains. Estimates of paralellization efficiency was obtained for model problem using different number of processors, different grids and different unions of subdomains.
Keywords: boundary value problems, parallel algorithms and technologies, quasistructured grids.
Mots-clés : domain decomposition
@article{VYURV_2013_2_3_a3,
     author = {V. M. Sveshnikov and B. D. Rybdylov},
     title = {About parallelization of solving of boundary value problems on quasistructured grids},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {63--72},
     year = {2013},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a3/}
}
TY  - JOUR
AU  - V. M. Sveshnikov
AU  - B. D. Rybdylov
TI  - About parallelization of solving of boundary value problems on quasistructured grids
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 63
EP  - 72
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a3/
LA  - ru
ID  - VYURV_2013_2_3_a3
ER  - 
%0 Journal Article
%A V. M. Sveshnikov
%A B. D. Rybdylov
%T About parallelization of solving of boundary value problems on quasistructured grids
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 63-72
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a3/
%G ru
%F VYURV_2013_2_3_a3
V. M. Sveshnikov; B. D. Rybdylov. About parallelization of solving of boundary value problems on quasistructured grids. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 63-72. http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a3/

[1] Yu. Kuznetsov, “Efficient iterative solvers for elliptic problems on nonmatching grids”, Russian Journal of Numerical Analysis and Mathematical Modeling, 10:3 (1995), 187-211

[2] Yu. V. Vasilevskij, “Methods for solving of boundary value problems using unmatched grids”, Proceedings of Mathematical Center of N.I. Lobachevski, 2 (1999), 94–121

[3] C. Bernardi, Y. Maday, A. Patera, “A new nonconforming approach to domain decomposition: the mortar element method”, Nonlinear partial differential equations and their applications. College de France Seminar, v. 11, 1994, 13–51

[4] V. M. Sveshnikov, “Construction of direct and iterative decomposition methods”, Journal of Applied and Industrial Mathematics, 12:3(39) (2009), 99–109

[5] V. M. Sveshnikov, D. O. Belyaev, “Construction of quasi-structured locally modified grids for solving problems of high current electronics”, Journal of South-Ural State University, series “Mathematical modeling and programming”, 14:40(299) (2012), 118–128

[6] V. P. Il’in, Finite differences and finite volumes methods for elliptic equations, ICM SB RAS, Novosibirsk, 2001, 318 pp.

[7] V. D. Korneev, Parallel programming in MPI, ICM SB RAS, Novosibirsk, 2002, 215 pp.