Mots-clés : domain decomposition
@article{VYURV_2013_2_3_a2,
author = {V. P. Il'in},
title = {On the questions of parallelized {Krylov{\textquoteright}s} iterative methods},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {48--62},
year = {2013},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/}
}
TY - JOUR AU - V. P. Il'in TI - On the questions of parallelized Krylov’s iterative methods JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2013 SP - 48 EP - 62 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/ LA - ru ID - VYURV_2013_2_3_a2 ER -
%0 Journal Article %A V. P. Il'in %T On the questions of parallelized Krylov’s iterative methods %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2013 %P 48-62 %V 2 %N 3 %U http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/ %G ru %F VYURV_2013_2_3_a2
V. P. Il'in. On the questions of parallelized Krylov’s iterative methods. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 48-62. http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/
[1] V. P. Il’in, Finite element methods and technologies, NSC Publ., Novosibirsk, 2007
[2] V. I. Lebedev, V. I. Agoshkov, Variational domain decomposition method, v. 54, DCMRAS, Moscow, 1983
[3] J. Bramble, J. Pasciak, J. Wang, J. Xu, “Convergence estimates for product iterative methods with applications to domain decomposition”, Math. Comp, 57:195 (1991), 1–21
[4] V. P. l’in, “Parallel domain decomposition methods and technologies”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 46:305 (2012), 31–44
[5] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003
[6] D. S. Butyugin, V. P. Il’in, E. A. Itskovich et al., “Krylov: the library of algorithms and programs for solving SLAEs”, Modern problems of math. modeling, YUFU Publ., Rostov-Don, 2009, 110–128
[7] V. P. Il’in, “Problems of high performance technologies of solving large sparse SLAEs”, Computational methods and programming, 10:1 (2009), 141–147
[8] D. S. Butyugin, V. P. Il’in, D. V. Perevozkin, “Methods of parallel solving SLAEs on the systems with distributed memory”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 47:306 (2012), 5–19
[9] Intel Math Kernel Library from Intel } {\tt http://software.intel.com/...
[10] V. P. Il’in, L. V. Knysh, “Parallel domain decomposition methods in trance subspaces”, Computational methods and programming, 12:1 (2011), 100–109
[11] M. Brezina, P. Vanek, P. S. Vassilevsky, “An improved convergence analysis of smoothed aggregation algebraic multigrid”, Numer. Linear Algebra Appl, 19 (2012), 441–469
[12] C. Farhat, M. Lesoinne, P. LeTollei, K. Pierson, D. Rixen, “FETI-DP: A dual-primal unified FETI method. Part I: A faster alternative to the two-level FETI method”, Int. J. Numer. Math. Engrg., 50 (2001), 1523–1544
[13] Cluster HKC-30T
[14] Message Passing Interface at Open Directory Project } {\tt http://www.dmoz.org/.../MPI/
[15] V. E. Malyshkin, V. D. Korneev, Parallel programming the multi-computers, NSTU Publ., Novosibirsk, 2006, 310 pp.
[16] CUDA Tools Ecosystem } {\tt http://developer.nvidia.com/cuda-tools-ecosystem
[17] N. Bell, M. Garland, CUSP: Generic parallel algorithms for sparse matrix and graph computations } {\tt http://cusp-library.googlecode.com
[18] G. Karypis, V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM J. Sci. Comp, 20:1 (1999), 359–392
[19] Hypre } {\tt http://acts.nersc.gov/hypre/
[20] PETSc: Home Page } {\tt http://www.mcs.anl.gov/petsc/
[21] Yousef Saad — SOFTWARE } {\tt http://www-users.cs.umn.edu/~saad/software/