On the questions of parallelized Krylov’s iterative methods
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 48-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical questions of various computational technologies of parallelelized iterative processes of Krylov’s type for solving large sparse symmetric and non-symmetric SLAEs, obtained in grid approximations of multi-dimensional boundary value problems for PDEs, are considered. Example are presented by finite approximations in gas-hydrodynamical applications, where five unknowns in each node are defined and corresponding SLAEs have small-block structure. The base of used algorithms is flexible generalized minimal residual, FGMRES, method with dynamical preconditioners of additive type, which presents an upper level of two-step iterarive Swartz algorithm. High performance of algebraic solvers is provided by using different approaches: domain decompositions of various topologies, boundary conditions and sizes of subdomain overlapping, coarse grid correction, deflation and aggregation, and incomplete factorizations of matrices. The unified formulations of using algorithms as well as the questions of computational efficiency and scalable parallelization at the geterogenous supercomputers are described. The examples of technical requirements for peculiarities of program implementation of the libraries of parallel algorithms for solving systems of linear algebraic equation, are presented.
Keywords: iterative methods, Krylov subspaces, preconditioned matrices, parallel algorithms, program and computational technologies.
Mots-clés : domain decomposition
@article{VYURV_2013_2_3_a2,
     author = {V. P. Il'in},
     title = {On the questions of parallelized {Krylov{\textquoteright}s} iterative methods},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {48--62},
     year = {2013},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - On the questions of parallelized Krylov’s iterative methods
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 48
EP  - 62
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/
LA  - ru
ID  - VYURV_2013_2_3_a2
ER  - 
%0 Journal Article
%A V. P. Il'in
%T On the questions of parallelized Krylov’s iterative methods
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 48-62
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/
%G ru
%F VYURV_2013_2_3_a2
V. P. Il'in. On the questions of parallelized Krylov’s iterative methods. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 3, pp. 48-62. http://geodesic.mathdoc.fr/item/VYURV_2013_2_3_a2/

[1] V. P. Il’in, Finite element methods and technologies, NSC Publ., Novosibirsk, 2007

[2] V. I. Lebedev, V. I. Agoshkov, Variational domain decomposition method, v. 54, DCMRAS, Moscow, 1983

[3] J. Bramble, J. Pasciak, J. Wang, J. Xu, “Convergence estimates for product iterative methods with applications to domain decomposition”, Math. Comp, 57:195 (1991), 1–21

[4] V. P. l’in, “Parallel domain decomposition methods and technologies”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 46:305 (2012), 31–44

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003

[6] D. S. Butyugin, V. P. Il’in, E. A. Itskovich et al., “Krylov: the library of algorithms and programs for solving SLAEs”, Modern problems of math. modeling, YUFU Publ., Rostov-Don, 2009, 110–128

[7] V. P. Il’in, “Problems of high performance technologies of solving large sparse SLAEs”, Computational methods and programming, 10:1 (2009), 141–147

[8] D. S. Butyugin, V. P. Il’in, D. V. Perevozkin, “Methods of parallel solving SLAEs on the systems with distributed memory”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 47:306 (2012), 5–19

[9] Intel Math Kernel Library from Intel } {\tt http://software.intel.com/...

[10] V. P. Il’in, L. V. Knysh, “Parallel domain decomposition methods in trance subspaces”, Computational methods and programming, 12:1 (2011), 100–109

[11] M. Brezina, P. Vanek, P. S. Vassilevsky, “An improved convergence analysis of smoothed aggregation algebraic multigrid”, Numer. Linear Algebra Appl, 19 (2012), 441–469

[12] C. Farhat, M. Lesoinne, P. LeTollei, K. Pierson, D. Rixen, “FETI-DP: A dual-primal unified FETI method. Part I: A faster alternative to the two-level FETI method”, Int. J. Numer. Math. Engrg., 50 (2001), 1523–1544

[13] Cluster HKC-30T

[14] Message Passing Interface at Open Directory Project } {\tt http://www.dmoz.org/.../MPI/

[15] V. E. Malyshkin, V. D. Korneev, Parallel programming the multi-computers, NSTU Publ., Novosibirsk, 2006, 310 pp.

[16] CUDA Tools Ecosystem } {\tt http://developer.nvidia.com/cuda-tools-ecosystem

[17] N. Bell, M. Garland, CUSP: Generic parallel algorithms for sparse matrix and graph computations } {\tt http://cusp-library.googlecode.com

[18] G. Karypis, V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM J. Sci. Comp, 20:1 (1999), 359–392

[19] Hypre } {\tt http://acts.nersc.gov/hypre/

[20] PETSc: Home Page } {\tt http://www.mcs.anl.gov/petsc/

[21] Yousef Saad — SOFTWARE } {\tt http://www-users.cs.umn.edu/~saad/software/