@article{VYURV_2013_2_2_a9,
author = {T. A. Panyukova and E. A. Savitskiy},
title = {The software for constructing a graph covering with ordered enclosing for multiconnected planar graphs},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {111--117},
year = {2013},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a9/}
}
TY - JOUR AU - T. A. Panyukova AU - E. A. Savitskiy TI - The software for constructing a graph covering with ordered enclosing for multiconnected planar graphs JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2013 SP - 111 EP - 117 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a9/ LA - ru ID - VYURV_2013_2_2_a9 ER -
%0 Journal Article %A T. A. Panyukova %A E. A. Savitskiy %T The software for constructing a graph covering with ordered enclosing for multiconnected planar graphs %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2013 %P 111-117 %V 2 %N 2 %U http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a9/ %G ru %F VYURV_2013_2_2_a9
T. A. Panyukova; E. A. Savitskiy. The software for constructing a graph covering with ordered enclosing for multiconnected planar graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 2, pp. 111-117. http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a9/
[1] D. Chebikin, “On k-edge-ordered graphs”, Discrete Mathematics, 2004, no. 281, 115–128
[2] H. Fleischner, Eulerian Graphs and Related Topics, Part 1, v. 1, no. 45, Ann. Discrete Mathematics, 1990, 450 pp.
[3] H. Fleischner, Eulerian Graphs and Related Topics, Part 1, v. 2, no. 50, Ann. Discrete Mathematics, 1991, 325 pp.
[4] T. Panyukova, “Eulerian Cover with Ordered Enclosing for Flat Graphs”, Electronic Notes in Discrete Mathematics, 28 (2007), 17–24
[5] T. A. Panyukova, “Optimal Eulerian Covers for Planar Graphs”, Discrete Analysis and Operation Research, 18:2 (2011), 64–74
[6] T. A. Panyukova, “Eulerian Cover with Ordered Enclosing for a Multiconnected Graph”, Materials of Third International Conference “Mathematical Modelling, Optimization and IT”, Evrica, Kishinev, 2012, 429–438
[7] T. A. Panioukova, A. V. Panyukov, “Algorithms for Construction of Ordered Enclosing Traces in Planar Eulerian Graphs”, Proceedings of Workshop, The International Workshop on Computer Science and Information Technologies 2003 (Ufa, September 16–18, 2003), v. 1, Ufa State Technical University, 2003, 134–138
[8] A. V. Panyukov, T. A. Panioukova, “The Algorithm for Tracing of Flat Euler Cycles with Ordered Enclosing”, Proceedings of Chelyabinsk Scientific Center, 2000, no. 4(9), 18–22
[9] T. Pisanski, T. W. Tucker, A. Zitnik, “Straight-ahead walks in Eulerian graphs”, Discrete Mathematics, 281 (2004), 237–246
[10] S. Szeider, “Finding paths in graphs avoiding forbidden transitions”, Discrete Applied Mathematics, 2003, no. 126, 261–273
[11] A. Zitnik, “Plane graphs with Eulerian Petrie walks”, Discrete Mathematics, 244 (2002), 539–549