Mathematical modelling of elastic perturbations propagating from the earthquake hypocenter
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 2, pp. 56-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of this article is the development of the research software for the mathematical modelling of elastic waves propagation originated in the earthquake hypocenter through heterogeneous media. As a source of the perturbation the geophysical focal mechanism model based on the slipping along the fault is used. For the description of dynamic behavior of media the hyperbolic system of equations of elastic media is used with the explicit allocation of contact borders of heterogeneities. It is solved using the grid-characteristic method on curvilinear structured 3D meshes. One feature of used numerical algorithm is its highscalability per core. The usage of curvilinear meshes allows describing a wide variety of geometries with high precision. Mathematical formulation of problem, development of the research software and a set of numerical experiments were done by authors. The results of modelling of propagation of seismic perturbation through geological multilayered medium and assessment of seismic resistivity of ground facility are described in this article. The estimation of software scalability per core was carried out.
Keywords: seismic activity, propagation of elastic waves, heterogeneous media, mathematical modeling, numerical grid-characteristic method, hyperbolic system of equations.
@article{VYURV_2013_2_2_a4,
     author = {V. I. Golubev and N. I. Khokhlov},
     title = {Mathematical modelling of elastic perturbations propagating from the earthquake hypocenter},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {56--64},
     year = {2013},
     volume = {2},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a4/}
}
TY  - JOUR
AU  - V. I. Golubev
AU  - N. I. Khokhlov
TI  - Mathematical modelling of elastic perturbations propagating from the earthquake hypocenter
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 56
EP  - 64
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a4/
LA  - ru
ID  - VYURV_2013_2_2_a4
ER  - 
%0 Journal Article
%A V. I. Golubev
%A N. I. Khokhlov
%T Mathematical modelling of elastic perturbations propagating from the earthquake hypocenter
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 56-64
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a4/
%G ru
%F VYURV_2013_2_2_a4
V. I. Golubev; N. I. Khokhlov. Mathematical modelling of elastic perturbations propagating from the earthquake hypocenter. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 2, pp. 56-64. http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a4/

[1] M. Ala Saadeghvaziri, A. R. Yazdani-Motlag, “Seismic behavior and capacity/demand analysis of three multispan simply supported bridges”, Engineering Structures, 30 (2008), 54–66

[2] B. B. Soneji, R. S. Jangid, “Influence of soil structure interaction on the response of seismically isolated cable-stayed bridge”, Soil Dynamics and Earthquake Engineering, 28 (2008), 245–257

[3] M. M. Maniyar, R. K. Khare, R. P. Dhakal, “Probabilistic seismic performance evaluation of non-seismic RC frame buildings”, Structural Engineering and Mechanics, 33:6 (2009), 725–745

[4] K. M. Solberg, R. P. Dhakal, J. B. Mander, B. A. Bradley, “Rapid expected annual loss estimationmethodology for structures”, Earthquake Engineering and Structural Dynamics, 37:1 (2008), 81–101

[5] K. M. Magomedov, Numerical Grid-Characteristic Methods, eds. K. M. Magomedov, A. S. Holodov, Science, M., 1988, 288 pp.

[6] I. E. Kvasov, S. A. Pankratov, I. B. Petrov, “Numerical Modelling of Seismice Responses in Multilayered Geological Media using Grid-Characterisitic Methods”, Mathematical Modelling, 22:9 (2010), 13–22

[7] N. I. Khohlov, I. B. Petrov, “Modelling of Seismic Phenomena using Grid-Characteristic Method”, Proceedings of MIPT, 3 (2011), 159–167

[8] V. I. Golubev, I. E. Kvasov, I. B. Petrov, “Influence of Natural Disasters on Ground Facilities”, Mathematical Modelling and Computer Simulations, 23:8 (2011), 46–54

[9] L. M. Balakina, A. V. Vvedenskaya, N. V. Golubeva, L. A. Misharina, E. I. Shirokova, Elastic Stress Field of the Earth and earthquake focal mechanisms, Science, M., 1972, 191 pp.