@article{VYURV_2013_2_2_a1,
author = {D. S. Butyugin},
title = {Parallel application package {Helmholtz3D}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
pages = {18--32},
year = {2013},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a1/}
}
TY - JOUR AU - D. S. Butyugin TI - Parallel application package Helmholtz3D JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2013 SP - 18 EP - 32 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a1/ LA - ru ID - VYURV_2013_2_2_a1 ER -
D. S. Butyugin. Parallel application package Helmholtz3D. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/VYURV_2013_2_2_a1/
[1] Y. G. Soloveychick, M. E. Royak, M. G. Persova, Finite Element Method for the Solution of Scalar and Vector Problems, NSTU Publ., Novosibirsk, 2007
[2] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003
[3] P. Ingelstr\"øm, “A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes”, IEEE Transactions on Microwave Theory and Techniques, 54:1 (2006), 160–114
[4] V. P. Il’in, Methods and technologies of finite elements, ICM SBRAS Publ., Novosibirsk, 2007
[5] Eigen } {\tt http://eigen.tuxfamily.org
[6] Intel (R) Math Kernel Library from Intel } {\tt http://software.intel.com/en-us/intel-mkl
[7] J. Sch\"øberl, “NETGEN — An advancing front 2D/3D-mesh generator based on abstract rules”, Computing and Visualization in Science, 1:1 (1997), 41–52
[8] D. S. Butyugin, “Algorithms of SLAEs solution on the systems with distributed memory applied to the problems of electromagnetism”, Bulletin of South Ural State University. Seriers: Computational Mathematics and Software Engineering, 2012, no. 46(305), 5–18
[9] H. Fuchs, Z. M. Kedem, B. F. Naylor, “On visible surface generation by a priori tree structures”, ACM Computer Graphics, 14:3 (1980), 124–133
[10] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003
[11] J. Bramble, J. Pasciak, A. Schatz, “The construction of preconditioners for elliptic problems by substructuring. I.”, Mathematics of Computation, 47:175 (1986), 103–134
[12] R. Nabben, C. Vuik, “A comparison of deflation and coarse grid correction applied to porous media flow”, SIAM Journal on Numerical Analysis, 42:4 (2004), 1631–1647
[13] D. S. Butyugin, “Efficient iterative solvers for time-harmonic Maxwell equations using domain decomposition and algebraic multigrid”, Journal of Computational Science., 3:6 (2012), 480–485
[14] D. S. Butyugin, “Parallel SSOR preconditioner for the solution of electromagnetism problems in the frequency domain”, Computational methods and programming, 12:1 (2011), 110–117
[15] J. Hu, R. Tuminaro, P. Bochev et al., “Toward an h-independent algebraic multigrid method for Maxwell’s equations”, SIAM Journal on Scientific Computing, 27:5 (2005), 1669–1688