On point-wise error estimate in solving inverse problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 1, pp. 90-95

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the point-wise error estimation for the projection ill posed problems is suggested in the article. We compare point-wise error estimate with the error estimate on a set.
Keywords: ill-posed problem, method of projective regularization, module of coninuity.
Mots-clés : error estimation
@article{VYURV_2013_2_1_a8,
     author = {V. P. Tanana and T. S. Kamaltdinova},
     title = {On point-wise error estimate in solving inverse problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {90--95},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a8/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - T. S. Kamaltdinova
TI  - On point-wise error estimate in solving inverse problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 90
EP  - 95
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a8/
LA  - ru
ID  - VYURV_2013_2_1_a8
ER  - 
%0 Journal Article
%A V. P. Tanana
%A T. S. Kamaltdinova
%T On point-wise error estimate in solving inverse problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 90-95
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a8/
%G ru
%F VYURV_2013_2_1_a8
V. P. Tanana; T. S. Kamaltdinova. On point-wise error estimate in solving inverse problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 1, pp. 90-95. http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a8/