Modular-positional data format and software package for digit-parallel high-precision floating point calculations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 1, pp. 65-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new way of organization of high-precision floating point computations, which allows parallelizing arithmetic operations down to separate digits of multi-digit floating point mantissas through using a modular-positional data representation format, is considered. The main concept of this for mat is to represent the floating point mantissas in residue number system (RNS) and the exponent part in positional system. Floating point mantissas go with their positional characteristic that allows to successfully implement efficient algorithms for non-modular operations in RNS, such as division (special case), and rounding. Using this approach a software solution named High Precision Digit Parallel Solver (HPDP-Solver) is developed. HPDP-Solver can be flexibly configured for a specific PC configuration, resulting in a more efficient use of its resources. The results obtained during the experimental performance study of HPDP-Solver proved its advantages in solving high-precision numerical problems if compared to a world-famous GNU Multiple Precision Arithmetic Library. HPDP-Solver can be used to solve problems that have some special demands on computational precision.
Keywords: floating point, residue number system, modular-positional data format, parallel arithmetic, high-precision calculations.
@article{VYURV_2013_2_1_a6,
     author = {K. S. Isupov},
     title = {Modular-positional data format and software package for digit-parallel high-precision floating point calculations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {65--79},
     year = {2013},
     volume = {2},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a6/}
}
TY  - JOUR
AU  - K. S. Isupov
TI  - Modular-positional data format and software package for digit-parallel high-precision floating point calculations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2013
SP  - 65
EP  - 79
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a6/
LA  - ru
ID  - VYURV_2013_2_1_a6
ER  - 
%0 Journal Article
%A K. S. Isupov
%T Modular-positional data format and software package for digit-parallel high-precision floating point calculations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2013
%P 65-79
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a6/
%G ru
%F VYURV_2013_2_1_a6
K. S. Isupov. Modular-positional data format and software package for digit-parallel high-precision floating point calculations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, Tome 2 (2013) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/VYURV_2013_2_1_a6/

[1] K. S. Isupov, A. G. Ivanov, “Research Effectiveness Of Modern Means For High-Precision Calculations with Real Numbers”, Sat. Materials of the Russian Scientific and Technologic, Society, Science, Innovation (STC-2012) (Kirov, Russia, April, 16-27, 2012), Publishing of the Vyatka State University, Kirov, 2012, 12 pp.

[2] I. Y. Akushskii, D. I. Yuditskii, Computer Arithmetic in Residual Classes, Sov. Radio, 1968, 440 pp.

[3] A. Omondi, B. Premkuma, Residue Number Systems: Theory and Implementation (Advances in Computer Science and Engineering Texts), Imperial College Press, 2007, 312 pp.

[4] Sh. A. Ocokov, “Application of Fixed Point Modular Arithmetic for Reducing Influence of Round Errors of computer computation”, Information Technology, 2009, no. 12(160), 50–54

[5] A. Sabbagh, K. Navi, “New Arithmetic Residue to Binary Converters”, IJCSES International Journal of Computer Sciences and Engineering Systems, 1:4 (2007), 295–299

[6] S. Chang, Y. Lai, “Division Algorithm For Residue Numbers”, Applied Mathematics and Computation, 2006, no. 172(1), 368–378

[7] IEEE Standard for Floating-Point Arithmetic, IEEE, NY 10016-5997, USA, 2008, 70 pp.

[8] The GNU Multiple Precision Arithmetic Library } {\tt http://gmplib.org