Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 83-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New parallel algorithms are proposed for solving the initial-boundary value problems for anomalous diffusion equations with the Riemann-Liouville spatial- and/or timefractional derivatives. A two-grid technique is employed to construct these algorithms. Spline-approximation on a coarse grid is used to compute the spatial and time long-range effects, and a fine grid is used for finite-difference discretization of the fractional diffusion equations. The parallel algorithms with a spatial and a time domain decomposition are discussed separately. The approach originally developed for the Parareal algorithm is used for time domain decomposition. The theoretical estimates of the speed-up and efficiency of the proposed algorithms are given. It has been shown that the algorithms have a superlinear speed-up in comparison with a classical sequential finite-difference algorithm, and have the same accuracy if the size of a fine grid is agreed with the size of a coarse grid. Some computational results are also presented to verify the efficiency of the proposed algorithms.
Keywords: parallel two-grid algorithm, fractional differential equation.
Mots-clés : anomalous diffusion
@article{VYURV_2012_2_a7,
     author = {S. Yu. Lukashchuk},
     title = {Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {83--98},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/}
}
TY  - JOUR
AU  - S. Yu. Lukashchuk
TI  - Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 83
EP  - 98
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/
LA  - ru
ID  - VYURV_2012_2_a7
ER  - 
%0 Journal Article
%A S. Yu. Lukashchuk
%T Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 83-98
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/
%G ru
%F VYURV_2012_2_a7
S. Yu. Lukashchuk. Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 83-98. http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/

[1] J.P. Bouchaud, A. Georges, “Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications”, Physics Reports, 195:4–5 (1990), 127–293 | DOI

[2] R. Metzler, J. Klafter, “The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamic Approach”, Physics Reports, 339:1 (2000), 1–77 | DOI

[3] V.V. Uchaikin, “Self-Similar Anomalous Diffusion and Levy-Stable Laws”, Physics-Uspekhi, 46:8 (2003), 821–849 | DOI | DOI

[4] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives. Theory and Applications, 1993, 1006 pp.

[5] I. Podlubny, Fractional Differential Equations, Academic press, San Diego, 1999, 347 pp.

[6] V.V. Uchaikin, The Method of Fractional Derivatives, Artishok Publishing, Ul'yaNovsk, 2008, 512 pp.

[7] S.Yu. Lukashchuk, “Modification of the PARAREAL Algorithm for Solution of Fractional Differential Equations”, Proceedings of the International Conference “Parallel Computational Technologies (PCT'2010)”, Publishing of the South Ural State University, Chelyabinsk, 2010, 519–524

[8] V.M. Goloviznin, V.P. Kisilev, I.A. Korotkin, Yu.I. Yurkov, “Direct Problems of Nonclassical Radionuclide Transfer in Geological Formations”, Proceedings of the Russian Academy of Sciences. Series: Power Engineering, 2004, no. 4, 121–132

[9] Yu.S. Zav'yalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline-Functions, Nauka, Moscow, 1980, 353 pp.

[10] J.L. Lions, Y. Maday, G. Turinici, “Resolution d'EDP Par Un Schema en Temps Parareal”, Comptes Rendus de l'Académie des Sciences. Series I – Mathematics, 332:7 (2001), 661–668 | DOI

[11] Y. Maday, G. Turinici, “The Parareal in Time Iterative Solver: a Further Direction to Parallel Implementation”, Lecture Notes in Computational Science and Engineering: Domain Decomposition Methods in Science and Engineering XVIII, 40 (2005), 441–448

[12] Y. Maday, G. Turinicit, “Stability of the Parareal Algorithm”, Lecture Notes in Computational Science and Engineering: Domain Decomposition Methods in Science and Engineering XVIII, 40 (2005), 449–456

[13] M.J. Gander, S. Vandewalle, “On the Superlinear and Linear Convergence of the Parareal Algorithm”, Lecture Notes in Computational Science and Engineering: Domain Decomposition Methods in Science and Engineering XVI, 55 (2007), 291–298

[14] M.J. Gander, S. Vandewalle, “Analysis of the Parareal Time-parallel Time-integration Method”, SIAM Journal on Scientific Computing (SISC), 29:2 (2007), 556–578

[15] P.F. Fischer, F. Hecht, Y. Maday, “A Parareal in Time Semi-Implicit Approximation of the Navier-Stokes Equations”, Lecture Notes in Computational Science and Engineering: Domain Decomposition Methods in Science and Engineering XVIII, 40 (2005), 433–440

[16] G. Bal, Q. Wu, “Symplectic Parareal”, Lecture Notes in Computational Science and Engineering: Domain Decomposition Methods in Science and Engineering XVII, 60 (2008), 401–408