Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 83-98
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			New parallel algorithms are proposed for solving the initial-boundary value problems for anomalous diffusion equations with the Riemann-Liouville spatial- and/or timefractional derivatives. A two-grid technique is employed to construct these algorithms. Spline-approximation on a coarse grid is used to compute the spatial and time long-range effects, and a fine grid is used for finite-difference discretization of the fractional diffusion equations. The parallel algorithms with a spatial and a time domain decomposition are discussed separately. The approach originally developed for the Parareal algorithm is used for time domain decomposition. The theoretical estimates of the speed-up and efficiency of
the proposed algorithms are given. It has been shown that the algorithms have a superlinear speed-up in comparison with a classical sequential finite-difference algorithm, and have the same accuracy if the size of a fine grid is agreed with the size of a coarse grid. Some computational results are also presented to verify the efficiency of the proposed algorithms.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
parallel two-grid algorithm, fractional differential equation.
Mots-clés : anomalous diffusion
                    
                  
                
                
                Mots-clés : anomalous diffusion
@article{VYURV_2012_2_a7,
     author = {S. Yu. Lukashchuk},
     title = {Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {83--98},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/}
}
                      
                      
                    TY - JOUR AU - S. Yu. Lukashchuk TI - Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika PY - 2012 SP - 83 EP - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/ LA - ru ID - VYURV_2012_2_a7 ER -
%0 Journal Article %A S. Yu. Lukashchuk %T Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika %D 2012 %P 83-98 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/ %G ru %F VYURV_2012_2_a7
S. Yu. Lukashchuk. Parallel two-grids algorithms for solution of anomalous diffusion equations of fractional order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 83-98. http://geodesic.mathdoc.fr/item/VYURV_2012_2_a7/
