Approaches to the optimization and parallelization of computations in the problem of detecting objects of different classes in the image
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 68-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem of object detection in static images. We describe a state-of-the-art method based on Latent SVM algorithm. A well-known approach to speed up calculations, the construction of cascade classifiers, is used. We describe a computational scheme that uses cascade modification of the original Latent SVM algorithm The issues of parallelization and performance optimization are discussed. We analyze the most timeconsuming parts of implementation, consider several parallelization schemes and aspects of their performance. The results of numerical experiments on PASCAL Visual Object Challenge 2007 image dataset are given.
Keywords: object detection, algorithm Latent SVM, parallelization.
Mots-clés : cascade classifier
@article{VYURV_2012_2_a6,
     author = {E. A. Kozinov and V. D. Kustikova and I. B. Meyerov and A. N. Polovinkin and A. A. Sidnev},
     title = {Approaches to the optimization and parallelization of computations in the problem of detecting objects of different classes in the image},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {68--82},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_2_a6/}
}
TY  - JOUR
AU  - E. A. Kozinov
AU  - V. D. Kustikova
AU  - I. B. Meyerov
AU  - A. N. Polovinkin
AU  - A. A. Sidnev
TI  - Approaches to the optimization and parallelization of computations in the problem of detecting objects of different classes in the image
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 68
EP  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_2_a6/
LA  - ru
ID  - VYURV_2012_2_a6
ER  - 
%0 Journal Article
%A E. A. Kozinov
%A V. D. Kustikova
%A I. B. Meyerov
%A A. N. Polovinkin
%A A. A. Sidnev
%T Approaches to the optimization and parallelization of computations in the problem of detecting objects of different classes in the image
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 68-82
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2012_2_a6/
%G ru
%F VYURV_2012_2_a6
E. A. Kozinov; V. D. Kustikova; I. B. Meyerov; A. N. Polovinkin; A. A. Sidnev. Approaches to the optimization and parallelization of computations in the problem of detecting objects of different classes in the image. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 68-82. http://geodesic.mathdoc.fr/item/VYURV_2012_2_a6/

[1] D. Forsajt, Zh. Pons, Computer Vision. A Modern Approach, Williams, Moscow, 2004, 465 pp.

[2] R. Szeliski, Computer Vision: Algorithms and Applications, Springler, 2010, 979 pp.

[3] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis and Machine Vision, Thomson, 2008, 866 pp.

[4] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, “Object Detection with Discriminatively Trained Part Based Models”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:9 (2010), 1627–1645

[5] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, “Cascade Object Detection with Deformable Part Model”, Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR'10), 2010, 2241–2248

[6] T. Hastie, R. Tibshirani, J. Freidman, “The Elements of Statistical Learning. Data Mining, Inference and Prediction”, Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR'10), 2001, 745 pp.

[7] P. Viola, M.J. Jones, “Robust Real-Time Face Detection”, International Journal of Computer Vision, 57(2) (2004), 137–154

[8] P. Viola, M.J. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features”, Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR'01), v. 1, 2001, I-511–I-518

[9] T. Tuytelaars, M. Proesmans, L. Van Gool, “The Cascaded Hough Transform”, Proceedings of the IEEE International Conference on Image Processing (ICIP'97), v. II, 1997, 736–739

[10] A. Pentland, T. Choudhury, “Face Recognition for Smart Environments”, IEEE Computer Vision, II (2000), 50–55

[11] D. Alonso, L. Saldaro, M. Nieto, “Robust Vehicle Detection through Multidimensional Classification for on Broad Video Based Systems”, Proceedings of the IEEE International Conference on Image Processing (ICIP'07), 2007, IV-321–IV-324

[12] N. Dalal, B. Triggs, “Histograms of Oriented Gradients for Human Detection”, Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR'05), v. 1, 2005, 886–893

[13] P. Viola, M.J. Jones, D. Snow, “Detecting Pedestrians Using Patterns of Motion and Appearance”, Proceedings of the 9th International Conference on Computer Vision (ICCV'03), v. 1, 2003, 734–741

[14] D.M. Gavrila, J. Giebel, S. Munder, “Vision-Based Pedestrian Detection: The Protector System”, Proceedings of the IEEE Intelligent Vehicles Symposium (Parma, Italy), 2004, 13–18

[15] Y. Amit, 2d Object Detection and Recognition: Models, Algorithms and Networks, The MIT Press, 2002, 325 pp.

[16] J. Shotton, A. Blake, R. Cipolla, “Contour-based Learning for Object Detection”, Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05), v. 1, 2005, 503–510

[17] A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin, “Contex-based Vision System for Place and Object Recognition”, Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV'03), v. 1, 2003, 273–283

[18] J.Ch. Myung, J.J. Lim, A. Torralba, A.S. Willsky, “Exploiting Hierarchical Contex on a Large Database of Object Categories”, Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR'10), 2010, 129–136