Parallel methods for SLAE solution on the systems with distributed memory in Krylov library
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 22-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents an approach to creation of black-box parallel iterative solver, which is used in Krylov library for solving systems of linear algebraic equations (SLAEs) with large sparse matrices in CSR format arising from discretization of multidimensional boundary value problems. A variant of one-dimensional algebraic decomposition method is offered. The algorithm is based on breadth-first search of SLAE’s adjacency graph that allows to reduce the matrix to block-tridiagonal form. The algebraic solver is based on additive Schwarz method which naturally suits distributed memory computer systems. The generalized minimal residual method is used to solve the SLAEs arising from relations on subdomains’ boundaries. Auxiliary subdomain systems are solved with Intel MKL’s multithreaded direct solver PARDISO. Implemented algorithms were tested on the numerical solution of the series of computational mathematics problems, such as problems of hydrodynamics, diffusion-convection equations, problems of electromagnetism and others. Adduced numerical experiments results show the effectiveness of the presented algorithms for multiprocessor computational systems with distributed memory.
Keywords: iterative algorithms, domain decomposition methods, parallel computing, algebraic systems, numerical experiments, additive Schwarz method.
Mots-clés : sparse matrices
@article{VYURV_2012_2_a2,
     author = {D. S. Butyugin and V. P. Il'in and D. V. Perevozkin},
     title = {Parallel methods for {SLAE} solution on the systems with distributed memory in {Krylov} library},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {22--36},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_2_a2/}
}
TY  - JOUR
AU  - D. S. Butyugin
AU  - V. P. Il'in
AU  - D. V. Perevozkin
TI  - Parallel methods for SLAE solution on the systems with distributed memory in Krylov library
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 22
EP  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_2_a2/
LA  - ru
ID  - VYURV_2012_2_a2
ER  - 
%0 Journal Article
%A D. S. Butyugin
%A V. P. Il'in
%A D. V. Perevozkin
%T Parallel methods for SLAE solution on the systems with distributed memory in Krylov library
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 22-36
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2012_2_a2/
%G ru
%F VYURV_2012_2_a2
D. S. Butyugin; V. P. Il'in; D. V. Perevozkin. Parallel methods for SLAE solution on the systems with distributed memory in Krylov library. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 22-36. http://geodesic.mathdoc.fr/item/VYURV_2012_2_a2/

[1] G. Karypis, V. Kumar, “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”, SIAM Journal on Scientific Computing, 20:1 (1999), 359–392

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003, 520 pp.

[3] Intel (R) Math Kernel Library from Intel, (data obrascheniya: 03.11.2012) http://software.intel.com/en-us/articles/intel-mkl/

[4] Eigen, (data obrascheniya: 03.11.2012) http://eigen.tuxfamily.org/index.php?title=Main_Page

[5] V.P. Il’in, D.S. Butyugin, E.A. Itskovich et al., “Krylov: a Library of Algorithms and Programs for Solving SLAE”, Proceedings of AllRussian Youth Scientific Schools ”Modern Problems of Mathematical Modeling. Mathematical Modeling, Numerical Methods and Program Complexes, SFedU Publ., Rostov-on-Don, 2009, 110–128

[6] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, 2001, 1180 pp.

[7] V.P. Il'in, Methods and Technologies of Finite Elements, ICM SBRAS Publ., Novosibirsk, 2007, 370 pp.

[8] Klaster NKS-30T, (data obrascheniya: 03.11.2012) http://www2.sscc.ru/HKC-30T/HKC-30T.htm

[9] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003, 450 pp.

[10] P. Ingelstrom, “A New Set of H(curl)-Conforming Hierarchical Basis Functions for Tetrahedral Meshes”, IEEE Transactions on Microwave Theory and Techniques, 54:1 (2006), 160–114