On the uniqueness of the inverse problem of unsteady filtration
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 12-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When determining the coefficient of the hydraulic conductivity of oil layer by the method of the hydrodynamic listening of mining holes well is necessary to solve the inverse task of filtration. Thus it is important to set the task so that to provide the uniqueness of the decision. In this article sufficiency conditions for the uniqueness of the inverse problem are defined.
Keywords: inverse problem of filtration
Mots-clés : Laplace transform, Sturm–Liouville problem.
@article{VYURV_2012_2_a1,
     author = {A. V. Bokov},
     title = {On the uniqueness of the inverse problem of unsteady filtration},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {12--21},
     year = {2012},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_2_a1/}
}
TY  - JOUR
AU  - A. V. Bokov
TI  - On the uniqueness of the inverse problem of unsteady filtration
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 12
EP  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_2_a1/
LA  - ru
ID  - VYURV_2012_2_a1
ER  - 
%0 Journal Article
%A A. V. Bokov
%T On the uniqueness of the inverse problem of unsteady filtration
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 12-21
%N 2
%U http://geodesic.mathdoc.fr/item/VYURV_2012_2_a1/
%G ru
%F VYURV_2012_2_a1
A. V. Bokov. On the uniqueness of the inverse problem of unsteady filtration. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 2 (2012), pp. 12-21. http://geodesic.mathdoc.fr/item/VYURV_2012_2_a1/

[1] A.M. Denisov, Introduction to the Theory of Inverse Problems, Publishing of the Moscow State University, Moscow, 1994, 208 pp.

[2] S.I. Kabanikhin, Inverse and Ill-posed Problems, Science Press, Novosibirsk, 2009, 457 pp.

[3] V.V. Stepanov, Course on Differential Equations, Publishing house of technical and theoretical literature, Moscow, 1938, 376 pp.

[4] N.A. Martynenko, L.M. Pustyl’nikov, Finite Integral Transformations and their Application to the Study of Systems with Distributed Parameter, Nauka, Moscow, 1986, 304 pp.

[5] B.M. Levitan, I.S. Sargosyan, Introduction to Spectral Theory, Nauka, Moscow, 1970, 672 pp.

[6] N. Levinson, “The Inverse Sturm–liouville Problem”, Math. Tidsskr. Ser. B., 1949, 25–30