A parallel approach to estimation of the approximate optimal control
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 56-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the method for computing a priori estimates of the approximate optimal control based on the Krotov sufficient conditions for optimality is considered. These estimates provide us with information about the quality of the approximate optimal solution obtained by applying the improvement control procedure. The method is implemented in the form of a parallel algorithm and may be used at the stage of finding out initial control. This algorithm is an essential part of the developed software package intended for optimization of controllable dynamical systems with piecewise constant and piecewise linear control. We also consider the scalability of the parallel algorithm in the OpenTS parallel programming system for bifunctional catalyst blend optimization problem and production of secreted protein in a fed-batch reactor problem.
Keywords: optimal control, Krotov’s sufficient conditions of optimality, estimation of control, parallel algorithm.
@article{VYURV_2012_1_a4,
     author = {O. V. Fesko},
     title = {A parallel approach to estimation of the approximate optimal control},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {56--66},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_1_a4/}
}
TY  - JOUR
AU  - O. V. Fesko
TI  - A parallel approach to estimation of the approximate optimal control
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 56
EP  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_1_a4/
LA  - ru
ID  - VYURV_2012_1_a4
ER  - 
%0 Journal Article
%A O. V. Fesko
%T A parallel approach to estimation of the approximate optimal control
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 56-66
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2012_1_a4/
%G ru
%F VYURV_2012_1_a4
O. V. Fesko. A parallel approach to estimation of the approximate optimal control. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 56-66. http://geodesic.mathdoc.fr/item/VYURV_2012_1_a4/

[1] V.F. Krotov, V.I. Gurman, Methods and Problems of Optimal Control, Nauka, Moscow, 1973, 216 pp.

[2] O.V. Fesko, “Algorithm for Piecewise Linear Control Searching with Movable Switching Points”, Buryat State University Bulletin, 2011, no. 9, 52–56

[3] O.V. Fesko, “Software Package for Optimal Control Searching on the Simple Control Set”, Proceedings of the 2011 International Scientific Conference on Parallel Computational Technologies (Moscow), 2011, 712 pp.

[4] O.V. Fesko, “Parallel Algorithm for Optimization Dynamical Systems on Piecewise Linear Control Set”, Buryat State University Bulletin, 2010, 79–87

[5] V.I. Gurman, The Extension Principle in Control Problems, Nauka, Moscow, 1997

[6] E.A. Trushkova, “The Estimate of Approximate Solutions on the Base of Model Transformation”, Buryat State University Bulletin, 2011, no. 9, 47–51

[7] A. Moskovsky, V. Roganov, S. Abramov, “Parallelism Granules Aggregation with the T-system”, 9th International Conference on Parallel Computing Technologies. LNCS 4671, 2007, 293–302

[8] R. Luus, J. Dittrich, F.J. Keil, “Multiplicity of Solutions in the Optimization of a Bifunctional Catalyst Blend in a Tubular Reactor”, Can. J. Chem. Eng., 1992, no. 70, 780–785

[9] S. Park, W.F. Ramirez, “Optimal Production of Secreted Protein in Fed-batch Reactors”, AIChE J., 1988, no. 70, 1550–1558

[10] R. Luus, Iterative Dynamic Programming, Boca Raton: Chapman and Hall/CRC, 2000, 324 pp.