Parallel methods and technologies of domain decomposition
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 31-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parallel domain decomposition methods for solving 3-D grid boundary value problems, which are obtained by finite-element or finite-volume approximations are considered. These problems present the bottle neck between different stages of mathematical modelling, because the modern requirements to accuracy of grid algorithms provide the necessity of solving the systems of linear algebraic equations with the hundred millions of degrees of freedom and with super-high condition numbers which demand the extremal computing resourses. Multi-parameter versions of algorithms with various domain decomposition dimensions — one-dimensional, two-dimensional and three-dimensional, — with or without overlapping of subdomains and with different kinds of internal conjecture conditions on the adjacent boundaries (Dirichlet, Neuman and Robin). The iterative Krylov processes in the trace spaces are investigated for the different preconditioning approaches: Poincare–Steklov operators, block Cimmino method, alternating Schwartz algorithm of additive type, as well as coarse grid correction which is, in a sense, the simplified version of algebraic multigrid method. The comparative analysis of the criteria of parallelezation for the multiprocessor computer systems is made.
Mots-clés : domain decomposition
Keywords: tridimensional boundary value problems, grid approximations, parallel iterative algorithms in Krylov spaces, preconditioning operators.
@article{VYURV_2012_1_a2,
     author = {V. P. Il'in},
     title = {Parallel methods and technologies of domain decomposition},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {31--44},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_1_a2/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Parallel methods and technologies of domain decomposition
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 31
EP  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_1_a2/
LA  - ru
ID  - VYURV_2012_1_a2
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Parallel methods and technologies of domain decomposition
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 31-44
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2012_1_a2/
%G ru
%F VYURV_2012_1_a2
V. P. Il'in. Parallel methods and technologies of domain decomposition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 31-44. http://geodesic.mathdoc.fr/item/VYURV_2012_1_a2/

[1] G.I. Marchuk, Numerical Analysis Methods, Nauka, Moscow, 1977, 459 pp.

[2] V.P. Il’in, Finite Difference and Finite-volume Methods for Elliptic Partial Difference Equations, Institute of Computational Modelling SB RAS, Novosibirsk, 2000, 345 pp.

[3] V.I. Levedev, V.I. Agoshkov, Poincaré–Steklov Operators and their Application in Analysis, Computational Mathematics Department of USSRAS, VINITI, Moscow, 1983, 184 pp.

[4] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, Oxford, 1999, 376 pp.

[5] B.F. Smith, P.E. Bjorstad, W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 2004, 240 pp.

[6] A. Toselli, O. Widlund, Domain Decomposition Methods. Algorithms and Theory, Springer, Berlin, 2005, 450 pp.

[7] V.P. Il’in, “Parallel Processes in Petaflopic Modeling”, Numerical Methods and Programming, 12:1 (2011), 93–99

[8] F. Nataf, “Optimized Schwarz Methods”, Lecture Notes in Computer Science and Engineering, 2009, 233–240, Springer-Verlag, Berlin

[9] V.P. Il’in, D.V. Knysh, “Parallel Methods of Decomposition in Trace Spaces”, Numerical Methods and Programming, 12:1 (2011), 100–109, MSU Publ.

[10] V.V. Smelov, T.B. Zhuravleva, Subdomain Iteration Principle in Partial Differential Equation Problems, Preprint no. 14, VINITI, Moscow, 1981, 11 pp.

[11] S.A. Sander, Schwartz Algorithm Modification for Solving Grid Boundary Value Problems in Areas of Rectangles and Parallelepipeds, Preprint no. 83, CC SB USSRAS, Novosibirsk, 1984, 218 pp.

[12] A.M. Matsokin, S.V. Nepomnyaschikh, “Using the Bordering Method for Solving Systems of Mesh Equations”, Numerical Methods in Mathematical Physics Problems, 1983, 99–109, CC SB USSRAS, Novosibirsk

[13] V.I. Lebedev, V.I. Agoshkov, The Variational Algorithms of Domain Decomposition Method, Preprint no. 54, Department of Numerical Mathematics of RAS, Moscow, 1983, 24 pp.

[14] S.V. Nepomnyaschikh, On the Application of the Bordering Method to the Mixed Boundary Value Problem for Elliptic Equations and on Mesh Norms in $W^{1/2}_{2}(S)$, Preprint no. 106, CC SB USSRAS, Novosibirsk, 1984, 24 pp.

[15] Yu.A. Kuznetsov, New Algorithms for Approximate Implementation of Implicit Difference Schemes, Preprint no. 142, Department of Numerical Mathematics of RAS, Moscow, 1987, 23 pp.

[16] V.M. Sveshnikov, “Construction of Direct and Iterative Decomposition Methods”, J. Appl. Industr. Math., 12:3(39) (2009), 99–109

[17] J.M. Tang, R. Nabben, C. Vuik, Y.A. Erlangga, “Comparison of Two-level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods”, J. Sci. Comput., 39 (2009), 340–370

[18] Domain Decomposition Methods, (data obrascheniya: 14.03.2012) http://ddm.org

[19] V.P. Il’in, Finite Element Methods and Technologies, ICMMG SB RAS, Novosibirsk, 2007, 371 pp.

[20] V.P. Il’in, “On Iterational Kachmazh Method and its Generalizations”, J. Appl. Industr. Math., 9:3 (2006), 39–49