Algorithms of SLAEs solution for the systems with distributed memory applied to the problems of electromagnetism
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Paper presents various aspects of harmonic electromagnetic fields simulation on clusters. The major computational complexity comes from the solution of the systems of linear algebraic equations (SLAEs) arising from the approximations of corresponding electromagnetic boundary value problems by Nedelec elements of various orders. Effective and efficient approaches to the decomposition of the computational domain and the matrix of the system are considered. Distributed SLAEs are solved using iterative Krylov subspace methods preconditioned by additive Schwarz method. In order to increase the effectiveness of the algorithms iterations are performed in the trace space. Implementation of the solvers is based on MPI for data transfers. The solution of the systems in subdomains is performed by PARDISO direct solver from Intel$\circledR$ MKL library. Numerical experiments results on a series of model and real-life problems show the effectiveness of the presented algorithms.
Keywords: Maxwell equations, iterative algorithms, domain decomposition methods, additive Schwarz method.
@article{VYURV_2012_1_a0,
     author = {D. S. Butyugin},
     title = {Algorithms of {SLAEs} solution for the systems with distributed memory applied to the problems of electromagnetism},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a Vy\v{c}islitelʹna\^a matematika i informatika},
     pages = {5--18},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURV_2012_1_a0/}
}
TY  - JOUR
AU  - D. S. Butyugin
TI  - Algorithms of SLAEs solution for the systems with distributed memory applied to the problems of electromagnetism
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
PY  - 2012
SP  - 5
EP  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURV_2012_1_a0/
LA  - ru
ID  - VYURV_2012_1_a0
ER  - 
%0 Journal Article
%A D. S. Butyugin
%T Algorithms of SLAEs solution for the systems with distributed memory applied to the problems of electromagnetism
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika
%D 2012
%P 5-18
%N 1
%U http://geodesic.mathdoc.fr/item/VYURV_2012_1_a0/
%G ru
%F VYURV_2012_1_a0
D. S. Butyugin. Algorithms of SLAEs solution for the systems with distributed memory applied to the problems of electromagnetism. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ Vyčislitelʹnaâ matematika i informatika, no. 1 (2012), pp. 5-18. http://geodesic.mathdoc.fr/item/VYURV_2012_1_a0/

[1] G. Karypis, V. Kumar, “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”, SIAM Journal on Scientific Computing, 20:1 (1999), 359–392

[2] Y. Saad, “Iterative Methods for Sparse Linear Systems, Second Edition”, Society for Industrial and Applied Mathematics, 2003, 535 pp.

[3] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003, 450 pp.

[4] Y.G. Soloveychick, M.E. Royak, M.G. Persova, Finite Element Method for the Solution of Scalar and Vector Problems, NSTU Publ., Novosibirsk, 2007, 896 pp.

[5] P. Ingelstrom, “A New Set of H(curl)-Conforming Hierarchical Basis Functions for Tetrahedral Meshes”, IEEE Transactions on Microwave Theory and Techniques, 54:1 (2006), 106–114

[6] V.P. Il’in, Methods and Technologies of Finite Elements, ICM SBRAS Publ., Novosibirsk, 2007, 371 pp.

[7] H. Fuchs, Z.M. Kedem, B.F. Naylor, “On Visible Surface Generation by a Priori Tree Structures”, ACM Computer Graphics, 14:3 (1980), 124–133

[8] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, MIT Press, 2001, 1184 pp.

[9] The Flagship High-Performance Computing Math Library for Windows*, Linux*, and Mac OS* X, (data obrascheniya: 22.01.2012) http://software.intel.com/en-us/articles/intel-mkl/

[10] J. Schöberl, “NETGEN – An Advancing Front 2D/3D-mesh Generator Based on Abstract Rules”, Computing and Visualization in Science, 1:1 (1997), 41–52