A note on spectral theory of integral-functional Volterra operators
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 94-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A concise overview of the spectral theory of integral-functional operators is provided. In the context of analysis, a technique is described for deriving solutions to equations involving operators in a closed form. A constructive theorem has been established, outlining a procedure for determining the eigenvalues and eigenfunctions of these operators. Based on this theory, an analytical approach for generating solutions to a Volterra-type integro-functional inhomogeneous equation is proposed. The example illustrates the proposed theory.
Keywords: Volterra operator, eigenvalue, asymptotic approximation, integral-functional operator.
@article{VYURU_2024_17_4_a7,
     author = {D. N. Sidorov},
     title = {A note on spectral theory of integral-functional {Volterra} operators},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {94--99},
     year = {2024},
     volume = {17},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a7/}
}
TY  - JOUR
AU  - D. N. Sidorov
TI  - A note on spectral theory of integral-functional Volterra operators
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 94
EP  - 99
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a7/
LA  - en
ID  - VYURU_2024_17_4_a7
ER  - 
%0 Journal Article
%A D. N. Sidorov
%T A note on spectral theory of integral-functional Volterra operators
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 94-99
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a7/
%G en
%F VYURU_2024_17_4_a7
D. N. Sidorov. A note on spectral theory of integral-functional Volterra operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 94-99. http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a7/

[1] Sidorov D., Integral Dynamical Models: Singularities, Signals and Control, World Scientific Publishing Company, Singapore, 2014

[2] Dreglea L.R., Sidorov N., Sidorov D., “The Linear Fredholm Integral Equations with Functionals and Parameters”, Buletinul Academiei de Stiinte a Moldovei. Matematica, 102:2 (2023), 83–91 | DOI | Zbl

[3] Sidorov N., Sidorov D., “Branching Solutions of the Cauchy Problem for Nonlinear Loaded Differential Equations with Bifurcation Parameters”, Mathematics, 10:12 (2022), 21–34 | DOI

[4] Hu Yi-Teng., Sat M., “Trace Formulae for Second-Order Differential Pencils with a Frozen Argument”, Mathematics, 11:18 (2023), 39–96 | DOI

[5] Bondarenko N.P., “Finite-Difference Approximation of the Inverse Sturm–Liouville Problem with Frozen Argument”, Applied Mathematics and Computation, 413:1 (2022), 126653 | DOI | Zbl

[6] Nakhushev A.M., “Loaded Equations and Their Applications”, Differential Equations, 19:1 (1983), 86–94 | Zbl