Jamming coverage of blocks on a cubic lattice
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 82-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the discrete block jamming model on a cubic lattice is investigated by means of mathematical and computer simulation. A block ($k^3$-mer) with side length $k$ represents $k \times k \times k$ occupied nodes on the lattice. The start coordinates of the blocks are randomly generated uniformly distributed integers. The blocks do not overlap with each other. Periodic boundary conditions are used in the modelling. A blocks maximum packing algorithm is developed and a computer program is written to implement the mathematical model. A method for estimating of critical values by maximum lattice fill is proposed. The values of the jamming thresholds for many $k$ in the range from $2$ to $80$ were determined. Several estimates of the jamming threshold at $k\rightarrow \infty$ are obtained. The results of the paper suggest that the jamming threshold does not depend on the linear size of the lattice.
Keywords: jamming coverage, block, $k^3$-mer, cubic lattice, random sequential adsorption, percolation theory.
@article{VYURU_2024_17_4_a6,
     author = {K. A. Ebert and M. M. Buzmakova and S. V. Rusakov},
     title = {Jamming coverage of blocks on a cubic lattice},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {82--93},
     year = {2024},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a6/}
}
TY  - JOUR
AU  - K. A. Ebert
AU  - M. M. Buzmakova
AU  - S. V. Rusakov
TI  - Jamming coverage of blocks on a cubic lattice
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 82
EP  - 93
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a6/
LA  - ru
ID  - VYURU_2024_17_4_a6
ER  - 
%0 Journal Article
%A K. A. Ebert
%A M. M. Buzmakova
%A S. V. Rusakov
%T Jamming coverage of blocks on a cubic lattice
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 82-93
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a6/
%G ru
%F VYURU_2024_17_4_a6
K. A. Ebert; M. M. Buzmakova; S. V. Rusakov. Jamming coverage of blocks on a cubic lattice. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 82-93. http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a6/

[1] M. Nakamura, “Random Sequential Packing in Square Cellular Structures”, Journal of Physics A: Mathematical and General, 19:3 (1986), 2345–2351 | DOI

[2] M. Nakamura, “Percolational and Fractal Property of Random Sequential Packing Patterns in Square Cellular Structures”, Physical Review A, 36:5 (1987), 2384–2388 | DOI

[3] V. Privman, Jian-Sheng Wang, P. Nielaba, “Continuum limit in Random Sequential Adsorption”, Physical Review B, 43:4 (1991), 3366–3372 | DOI

[4] A.J. Ramirez-Pastor, P.M. Centres, E.E. Vogel, J.F. Valdes, “Jamming and Percolation for Deposition of $k^2$-mers on Square Lattices: A Monte Carlo Simulation Study”, Physical Review E, 99:4 (2019), 11 pp. | DOI

[5] A.C. Buchini Labayen, P.M. Centres, P.M. Pasinetti, A.J. Ramirez-Pastor, “Jamming and Percolation of $k^3$-mers on Simple Cubic Lattices”, Physical Review E, 100:2 (2019), 9 pp. | DOI

[6] G.D. Garcia, F.O. Sanchez-Varretti, P.M. Centres, A.J. Ramirez-Pastor, “Random Sequential Adsorption of Straight Rigid Rods on a Simple Cubic Lattice”, Physica A: Statistical Mechanics and its Applications, 436 (2015), 558–564 | DOI

[7] P.M. Pasinetti, P.M. Centres, A.J. Ramirez-Pastor, “Jamming and Percolation of $k^2$-mers on Simple Cubic Lattices”, Journal of Statistical Mechanics: Theory and Experiment, 2019:10 (2019), 16 pp. | DOI | Zbl

[8] Ciesla, M., Kubala P., “Random sequential Adsorption of Cubes”, Journal of Chemical Physics., 148:2 (2018), 5 pp. | DOI

[9] Bokov K.A., Buzmakova M.M., “Computer Simulation of Jamming for the Nakamura Percolation Problem”, Matematicheskie metody i informacionno-texnicheskie sredstva, materialy XV Vserossijskoj nauchno-prakticheskoj konferencii (Permian), 2019, 27–31 (in Russian)

[10] Bokov K.A., Buzmakova M.M., “The Jamming of the $k$-Meres of Different Form on the Square Lattice”, Matematika i mezhdisciplinarnye issledovaniya – 2019, materialy Vserossijskoj nauchno-prakticheskoj konferencii molodyx uchenyx s mezhdunarodnym uchastiem (Permian), 2019, 50–54 (in Russian)

[11] K.A. Bokov, M.M. Buzmakova, “The Modeling of the Polymer's Thin Film, Modified by Carbon Nanotubes, this Using of the Percolation Theory's Methods”, Journal of Physics: Conference Series, 1189:1 (2019), 012012, 5 pp. | DOI

[12] K.A. Bokov, M.M. Buzmakova, “The Percolation Model of the Structure of the Polymer Nanocomposite, Containing the Carbon Canotubes, with the Orient Factor Availability”, Journal of Physics: Conference Series, 1439 (2020), 5 pp. | DOI

[13] P.A. Likhomanova, I.V. Tronin, A.M. Grekhov, Yu.S. Eremin, “Modeling of Particle Diffusion in Heterogeneous Structure Near to the Percolation Threshold”, Physics Procedia, 72 (2015), 42–46 | DOI

[14] P.A. Likhomanova, K.Yu. Khromov, “Simulation of the Electrical Conductivity in Systems of Carbon Nanotubes”, Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 14:5 (2020), 1057–1060 | DOI

[15] S.V. Larin, S.V. Lyulin, P.A. Likhomanova, K.Yu. Khromov, A.A. Knizhnik, B.V. Potapkin, “Muiltiscale Modeling of Electrical Conductivity of R-BAPB Polyimide Plus Carbon Nanotubes Nanocomposites”, Physical Review Materials, 5:6 (2021), 15 pp. | DOI | Zbl

[16] G. Pulido-Reyes, L. Magherini, C. Bianco, R. Sethi, U. Gunten, R. Kaegi, D.M. Mitrano, “Nanoplastics Removal During Drinking Water Treatment: Laboratory- and Pilot-Scale Experiments and Modeling”, Journal of Hazardous Materials, 436 (2022), 13 pp. | DOI