Kolmogorov--Arnold neural networks technique for the state of charge estimation for Li-ion batteries
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 22-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Kolmogorov–Arnold Network (KAN) is an advanced type of neural network developed based on the Kolmogorov–Arnold representation theorem, offering a new approach in the field of machine learning. Unlike traditional neural networks that use linear weights, KAN applies univariate functions parameterized by splines, allowing it to flexibly capture and learn complex activation patterns more effectively. This flexibility not only enhances the model's predictive capability but also helps it handle complex issues more effectively. In this study, we propose KAN as a potential method to accurately estimate the state of charge (SoC) in energy storage devices. Experimental results show that KAN has a lower maximum error compared to traditional neural networks such as LSTM and FNN, demonstrating that KAN can predict more accurately in complex situations. Maintaining a low maximum error not only reflects KAN's stability but also shows its potential in applying deep learning technology to estimate SoC more accurately, thereby providing a more robust approach for energy management in energy storage systems.
Keywords: state of charge (SoC), Kolmogorov–Arnold networks, energy storage, neural network.
@article{VYURU_2024_17_4_a1,
     author = {M. H. Dao and F. Liu and D. N. Sidorov},
     title = {Kolmogorov--Arnold neural networks technique for the state of charge estimation for {Li-ion} batteries},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {22--31},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a1/}
}
TY  - JOUR
AU  - M. H. Dao
AU  - F. Liu
AU  - D. N. Sidorov
TI  - Kolmogorov--Arnold neural networks technique for the state of charge estimation for Li-ion batteries
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 22
EP  - 31
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a1/
LA  - en
ID  - VYURU_2024_17_4_a1
ER  - 
%0 Journal Article
%A M. H. Dao
%A F. Liu
%A D. N. Sidorov
%T Kolmogorov--Arnold neural networks technique for the state of charge estimation for Li-ion batteries
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 22-31
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a1/
%G en
%F VYURU_2024_17_4_a1
M. H. Dao; F. Liu; D. N. Sidorov. Kolmogorov--Arnold neural networks technique for the state of charge estimation for Li-ion batteries. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 4, pp. 22-31. http://geodesic.mathdoc.fr/item/VYURU_2024_17_4_a1/