@article{VYURU_2024_17_3_a5,
author = {Israa Th. Younis and Ekhlass S. Al-Rawi},
title = {Convergence analysis of the finite difference solution for coupled {Drinfeld{\textendash}Sokolov{\textendash}Wilson} system},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {73--86},
year = {2024},
volume = {17},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a5/}
}
TY - JOUR AU - Israa Th. Younis AU - Ekhlass S. Al-Rawi TI - Convergence analysis of the finite difference solution for coupled Drinfeld–Sokolov–Wilson system JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 73 EP - 86 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a5/ LA - en ID - VYURU_2024_17_3_a5 ER -
%0 Journal Article %A Israa Th. Younis %A Ekhlass S. Al-Rawi %T Convergence analysis of the finite difference solution for coupled Drinfeld–Sokolov–Wilson system %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 73-86 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a5/ %G en %F VYURU_2024_17_3_a5
Israa Th. Younis; Ekhlass S. Al-Rawi. Convergence analysis of the finite difference solution for coupled Drinfeld–Sokolov–Wilson system. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 3, pp. 73-86. http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a5/
[1] Smith J., Wang Lei, “An Introduction to the Drinfeld–Sokolov–Wilson System and Its Physical Applications”, Journal of Mathematical Physics, 53:5 (2012), 1234–1246
[2] Johnson M., Roberts K., “Challenges in Analytical and Numerical Approaches to the Drinfeld–Sokolov–Wilson System”, Computational Physics Letters, 28:2 (2015), 201–210
[3] Crank J., Nicolson P., “A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type”, Proceedings of the Cambridge Philosophical Society, 43:1 (1947), 50–67 | DOI | MR | Zbl
[4] Turner A., Adams B., “Applying the Crank–Nicolson Scheme to Nonlinear Systems: An Analysis”, Journal of Computational Mathematics, 36:3 (2018), 456–470
[5] Lee S., Kim Y., Park J., “Implicit Methods for Coupled Nonlinear Systems: A Comparative Study”, Numerical Analysis Review, 45:4 (2020), 789–805 | MR
[6] Alibeiki E., Neyrameh A., “Application of Homotopy Perturbation Method Tononlinear Drinfeld–Sokolov–Wilson Equation”, Middle-East Journal of Scientific Research, 10:4 (2011), 440–443
[7] Drinfeld V.G., Sokolov V.V., “Lie Algebras and Equations of Korteweg-de Vries Type”, Journal of Soviet Mathematics, 30:2 (1983), 1975–2036 | DOI | MR
[8] Jin Lin, Lu Junfeng, “Variational Iteration Method for the Classical Drinfeld–Sokolov–Wilson Equation”, Thermal Science, 18:5 (2014), 1543–1546 | DOI
[9] Kincaid D.R., Cheney E.W., Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole Publishing, Pacific Grove, 2009 | MR
[10] Qiao Z., Yan Z., “Nonlinear Integrable System and Its Darboux Transformation with Symbolic Computation to Drinfeld–Sokolov–Wilson Equation”, Mathematical and Computer Modelling, 54:1-2 (2011), 259–268
[11] Wilson G., “The Affine Lie Algebra $c^{(1)}_2$ and an Equation of Hirota and Satsuma”, Physics Letters, 89:7 (1982), 332–334 | DOI | MR
[12] Zhang Wei-Min, “Solitary Solutions and Singular Periodic Solutions of the Drinfeld–Sokolov–Wilson Equation by Variational Approach”, Applied Mathematical Sciences, 5:38 (2011), 1887–1894 | MR | Zbl
[13] Chapra S.C., Canale R.P., Numerical Methods for Engineers: with Programming and Software Applications, McGraw-Hill Education, New York, 1997 | MR
[14] Wazwaz Abdul-Majid, Linear and Nonlinear Integral Equations, Springer, Berlin, 2011 | MR | Zbl
[15] He Ji-Huan, Wu Xu-Hong, “Exp-Function Method for Nonlinear Wave Equations”, Chaos, Solitons and Fractals, 30:3 (2006), 700–708 | DOI | MR | Zbl
[16] Zhang Jin-Liang, Wang Mingliang, Wang Yue-Ming, Fang Zong-De, “The Improved F-Expansion Method and Its Applications”, Physics Letters A, 350:1-2 (2006), 103–109 | DOI | MR | Zbl
[17] Liu Zheng-Rong, Yang Chen-Xi, “The Application of Bifurcation Method to a Higher-Order KdV Equation”, Journal of Mathematical Analysis and Applications, 275:1 (2002), 1–12 | DOI | MR | Zbl
[18] Nemytskii V.V., Stepanov V.V., Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 2015 | MR