Impact of directed migration on the incidence of the population in the SIS model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 3, pp. 18-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical model of the spread of an infectious disease, written in the form of a system of nonlinear equations of parabolic type, is considered. The spatial and temporal evolution of the densities of two population groups is studied: susceptible to infection and infected. Mutual transition from one group to another is allowed. The dynamics of densities are determined by migration flows and local interaction. Migration flows are caused by the diffusion of the population across the area and directed migration caused by some stimulus. The modeling is carried out taking into account the mortality of infected people. Computational experiments determined the role of migration factors in epidemiological scenarios.
Keywords: mathematical modelling, epidemic, compartmental model, nonlinear PDEs
Mots-clés : taxis.
@article{VYURU_2024_17_3_a1,
     author = {A. V. Budyansky},
     title = {Impact of directed migration on the incidence of the population in the {SIS} model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {18--28},
     year = {2024},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a1/}
}
TY  - JOUR
AU  - A. V. Budyansky
TI  - Impact of directed migration on the incidence of the population in the SIS model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 18
EP  - 28
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a1/
LA  - ru
ID  - VYURU_2024_17_3_a1
ER  - 
%0 Journal Article
%A A. V. Budyansky
%T Impact of directed migration on the incidence of the population in the SIS model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 18-28
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a1/
%G ru
%F VYURU_2024_17_3_a1
A. V. Budyansky. Impact of directed migration on the incidence of the population in the SIS model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 3, pp. 18-28. http://geodesic.mathdoc.fr/item/VYURU_2024_17_3_a1/

[1] F.M. Snowden, Epidemics and Society: from the Black Death to the Present, Yale university press, New Haven, 2019

[2] F. Brauer, C. Castillo–Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012 | MR | Zbl

[3] R. Schlickeiser, M. Kroger, “Mathematics of Epidemics: On the General Solution of SIRVD, SIRV, SIRD, and SIR Compartment Models”, Mathematics, 12:7 (2024), 941 | DOI

[4] Bubeev Yu.A., Vladimirskiy B.M., Ushakov I.B., Usov V.M., Bogomoloov A.V., “Mathematical Modeling of Spread COVID-19 Epidemic for Preventive Measures to Protect Life and Health of Elderly”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 14:3 (2021), 92–98 | DOI | Zbl

[5] P. Kumar, V.S. Erturk, A. Yusuf, K.S. Nisar, S.F. Abdelwahab, “A Study on Canine Distemper Virus (CDV) and Rabies Epidemics in the Red Fox Population Via Fractional Derivatives”, Results Physics, 25 (2021), 104281 | DOI

[6] S.Pathak, A. Maiti, G.P. Samanta, “Rich Dynamics of an SIR Epidemic Model”, Nonlinear Anal Model Control, 15:1 (2010), 71–81 | DOI | MR | Zbl

[7] M.R. Sidi Ammi, M. Tahiri, D.F.M. Torres, “Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate”, Mathematics in Computer Science, 15 (2020), 91–105 | DOI | MR

[8] J.D. Murray, Mathematical Biology, v. II, Spatial models and Biomedical Applications, Springer, New York, 2003 | MR | Zbl

[9] W.E. Fitzgibbon, M. Langlais, J.J. Morgan, “A Reaction-Diffusion System Modeling Direct and Indirect Transmission of Diseases”, Discrete and Continuous Dynamical Systems, Series B, 4 (2004), 893–910 | DOI | MR | Zbl

[10] M.R. Sidi Ammia, A. Zinihi, A.A. Raezah, Y. Sabbar, “Optimal Control of a Spatiotemporal SIR Model with Reaction-Diffusion Involving $\rho$-Laplacian Operator”, Results in Physics, 52 (2023), 106895 | DOI

[11] H. Malchow, S.V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman and Hall, London, 2019 | MR

[12] E. Braverman, I. Ilmer, “Braverman, E. On the Interplay of Harvesting and Various Diffusion Strategies for Spatially Heterogeneous Populations”, Journal of Theoretical Biology, 466 (2019), 106–118 | DOI | MR

[13] Y.V. Tyutyunov, L.I. Titova, D. Sen, M. Banerjee, “Tyutyunov, Y.V. Predator Overcomes the Allee Effect Due to Indirect Prey-Taxis”, Ecological complexity, 39 (2019), 100772 | DOI

[14] Budyansky A.V., Tsybulin V.G., “Impact of Directed Migration on Formation of Spatial Structures of Populations”, Biophysics, 60 (2015), 622–631 | DOI

[15] K. Frischmuth, A.V. Budyansky, V.G. Tsybulin, “Frischmuth, K. Modeling of Invasion on a Heterogeneous Habitat: Taxis and Multistability”, Applied Mathematics and Computation, 410 (2021), 126456 | DOI | MR | Zbl

[16] Budyansky A.V., “Numerical Study of the Impact of Directed Migration of Non-Indigenous Species on Invasion Scenarios”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 33:4 (2023), 551–562 (in Russian) | DOI | MR | Zbl

[17] V. Giunta, T. Hillen, M.A. Lewis, J.R. Potts, “Detecting Minimum Energy States and Multi-Stability in Nonlocal Advection–Diffusion Models for Interacting Species”, Journal of Mathematical Biology, 85:5 (2022), 56 | DOI | MR | Zbl

[18] L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, “Allen, L.J.S. Asymptotic Profiles of the Steady States for an SIS Epidemic Disease Patch Model”, SIAM Journal on Applied mathematics, 67 (2007), 1283–1309 | DOI | MR | Zbl

[19] Rui Peng, Shengqiang Liu, “Global Stability of the Steady States of an SIS Epidemic Reaction-Diffusion Model”, Nonlinear Analysis, 71 (2009), 239–247 | DOI | MR | Zbl