@article{VYURU_2024_17_2_a8,
author = {T. G. Sukacheva and A. O. Kondiukov},
title = {Analysis of the {Avalos{\textendash}Triggiani} problem for the linear {Oskolkov} system of the highest order and a system of wave equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {104--110},
year = {2024},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a8/}
}
TY - JOUR AU - T. G. Sukacheva AU - A. O. Kondiukov TI - Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 104 EP - 110 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a8/ LA - en ID - VYURU_2024_17_2_a8 ER -
%0 Journal Article %A T. G. Sukacheva %A A. O. Kondiukov %T Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 104-110 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a8/ %G en %F VYURU_2024_17_2_a8
T. G. Sukacheva; A. O. Kondiukov. Analysis of the Avalos–Triggiani problem for the linear Oskolkov system of the highest order and a system of wave equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 104-110. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a8/
[1] Avalos G., Lasiecka I., Triggiani R., “Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System”, Georgian Mathematical Journal, 15:3 (2008), 403–437 | DOI | MR | Zbl
[2] Avalos G., Triggiani R., “Backward Uniqueness of the S.C. Semigroup Arising in Parabolic-Hyperbolic Fluid-Structure Interaction”, Differential Equations, 245:3 (2008), 737–761 | DOI | MR | Zbl
[3] Oskolkov A.P., “Initial-Boundary Value Problems for Equations of Motion of Kelvin–Voight Fluids and Oldroyd fluids”, Proceedings of the Steklov Institute of Mathematics, 179 (1989), 137–182 | MR | Zbl
[4] Sviridyuk G.A., Sukacheva T.G., “The Avalos–Triggiani Problem for the Linear Oskolkov System and a System of Wave Equations”, Computational Mathematics and Mathematical Physics, 62:3 (2022), 427–431 | DOI | DOI | MR | Zbl
[5] Sukacheva T.G., Sviridyuk G.A., “The Avalos–Triggiani Problem for the Linear Oskolkov System and a System of Wave Equaions. II”, Journal of Computational and Engineering Mathematics, 9:2 (2022), 67–72 | DOI | MR | Zbl
[6] Kondyukov A.O., Sukacheva T.G., “The Linear Oskolkov System of Nonzero Order in the Avalos–Triggiani Problem”, Journal of Computational and Engineering Mathematics, 10:4 (2023), 17–23 | DOI
[7] Sukacheva T.G., Kondyukov A.O., “Analysis of the Avalos–Triggiani Problem for the Linear Oskolkov System of Nonzero Order and a System of Wave Equations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16:4 (2023), 93–98 | DOI | Zbl
[8] Sukacheva T.G., “Unsteady Linearized Model of the Motion of an Incompressible High-Order Viscoelastic Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 17(150):3 (2009), 86–93 | Zbl
[9] Oskolkov A.P., “Some Nonstationary Linear and Quasilinear Systems Occurring in the Investigation of the Motion of Viscous Fluids”, Journal of Soviet Mathematics, 10 (1978), 299–335 | DOI | MR | Zbl
[10] Sviridyuk G.A., Sukacheva T.G., “Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type”, Differential Equations, 26:2 (1990), 188–195 | MR | Zbl
[11] Sviridyuk G.A., Sukacheva T.G., “On the Solvability of a Nonstationary Problem Describing the Dynamics of an Incompressible Viscoelastic Fluid”, Mathematical Notes, 63:3 (1998), 388–395 | DOI | DOI | MR | Zbl
[12] Kondyukov A.O., Sukacheva T.G., “Phase Space of the Initial–Boundary Value Problem for the Oskolkov System of Nonzero Order”, Computational Mathematics and Mathematical Physics, 55:5 (2015), 823–828 | DOI | DOI | MR | Zbl
[13] Vasyuchkova K.V., Manakova N.A., Sviridyuk G.A., “Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:4 (2017), 5–14 | DOI | Zbl
[14] Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A., “Multipoint Initial-Final Value for one Class of Sobolev Type Models of Higher Order with Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:3 (2018), 103–117 | DOI | Zbl
[15] Favini A., Zagrebina S.A., Sviridyuk G.A., “Multipoint Initial-Final Value Problems for Dinamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10 | MR