@article{VYURU_2024_17_2_a6,
author = {E. A. Soldatova and A. V. Keller},
title = {Numerical algorithm and computational experiments for one linear stochastic {Hoff} model},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {83--95},
year = {2024},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a6/}
}
TY - JOUR AU - E. A. Soldatova AU - A. V. Keller TI - Numerical algorithm and computational experiments for one linear stochastic Hoff model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 83 EP - 95 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a6/ LA - en ID - VYURU_2024_17_2_a6 ER -
%0 Journal Article %A E. A. Soldatova %A A. V. Keller %T Numerical algorithm and computational experiments for one linear stochastic Hoff model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 83-95 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a6/ %G en %F VYURU_2024_17_2_a6
E. A. Soldatova; A. V. Keller. Numerical algorithm and computational experiments for one linear stochastic Hoff model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 83-95. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a6/
[1] Frolov A.V., Dynamic-Stochastic Models of Long-Term Level Fluctuations in Non-Terminal Lakes, Nauka, M., 1985 (in Russian)
[2] Breer V.V., Novikov D.A., Rogatkin A.D., “Stochastic Models of Mob Control”, Automation and Remote Control, 77 (2016), 895–913 | DOI | MR | Zbl
[3] Kibzun A.I., Ivanov S.V., Stepanova A.S., “Construction of Confidence Absorbing Set for Analysis of Static Stochastic Systems”, Automation and Remote Control, 81:4 (2020), 589–601 | DOI | MR | Zbl
[4] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR | Zbl
[5] Gliklikh Yu.E., Global and Stochastic Analisys with Applications to Mathematical Physicas, Springer, London–Dordrecht–Heidelberg–New York, 2011 | MR
[6] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showolter–Sidorov Condition and Additive “Noise ””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 | DOI | Zbl
[7] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively $p$-Sectorial Operators in Space of “Noises ””, Abstract and Applied Analysis, 2015 (2015), 697410, 8 pp. | DOI | MR | Zbl
[8] Favini A., Sviridyuk G.A., Zamishlyaeva A.A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise ””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[9] Favini A., Sviridyuk G., Sagadeeva M., “Linear Sobolev Type Equations with Relatively $p$-Radial Operators in Space of “Noises ””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[10] Zagrebina S., Sukacheva T., Sviridyuk G., “The Multipoint Initial-Final Value Problems for Linear Sobolev-Type Equations with Relatively $p$-Sectorial Operator and Additive “Noise ””, Global and Stochastic Analysis, 5:2 (2018), 129–143
[11] Shestakov A.L., Keller A.V., Sviridyuk G.A., “The Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–16 | DOI | Zbl
[12] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[13] Melnikova I.V., Filinkov A.I., Anufrieva U.A., “Abstract Stochastic Equations. I. Classical and Distributional Solutions”, Journal of Mathematical Sciences, 111:2 (2002), 3430–3475 | DOI | MR | Zbl
[14] Kov$\acute{a}$cs M., Larsson S., “Introduction to Stochastic Partial Differential Equations”, Proceedings of New Directions in the Mathematical and Computer Sciences, v. 4, Abuja, 2008, 159–232 | Zbl
[15] Zamyshlyaeva A.A., “Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 73–82 | MR | Zbl
[16] Zagrebina S.A., Soldatova E.A., “The Linear Sobolev-Type Equations With Relatively $p$-Bounded Operators and Additive White Noise”, Bulletin of Irkutsk State University. Series: Mathematics, 6:1 (2013), 20–34 | Zbl
[17] Hoff N.J., The Analysis of Structures, John Wiley, New York, 1956 | Zbl
[18] Sidorov N.A., General Questions of Regularization in Problems of Bifurcation Theory, Irkutsk State University Publisher, Irkutsk, 1982 (in Russian)
[19] Sidorov N.A., Romanova O.A., “On Application of Some Results of the Branching Theory in the Process of Solving Differential Equations with Degeneracy”, Differential Equations, 19:9 (1983), 1516–1526 | MR | Zbl
[20] Sidorov N.A., Falaleev M.V., “Generalized Solution of Differential Equations with a Fredholm Operator at the Derivative”, Differential Equations, 23:4 (1987), 726–728 | Zbl
[21] Sviridyuk G.A., Shemetova V.V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | MR | Zbl
[22] Sviridyuk G.A., Bayazitova A.A., “On Direct and Inverse Problems for the Hoff Equations on Graph”, Journal of Samara State Technical University. Series: Physical and Mathematical Sciences, 2009, no. 1(18), 6–17 | DOI | Zbl
[23] Zagrebina S.A., Moskvicheva P.O., Stability in Hoff Models, LAMBERT Academic Publishing, Saarbr$\ddot{u}$cken, 2012 (in Russian)
[24] Manakova N.A., Dylkov A.G., “Optimal Control of Solutions of Initial-Finish Problem for the Linear Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 17(234):8 (2011), 113–114 | Zbl
[25] Sagadeeva M.A., Generalov A.V., “Numerical Solution for Non-Stationary Linearized Hoff Equation Defined on Geometrical Graph”, Journal of Computational and Engineering Mathematics, 5:3 (2018), 61–74 | DOI | MR
[26] Favini A., Zagrebina S.A., Sviridyuk G.A., “The Multipoint Initial–Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of K-“Noises ””, Mediterranean Journal of Mathematics, 19 (2022), 53 | DOI | MR | Zbl
[27] Soldatova E.A., “The Initial-Final Problem for the linear Stochastic Hoff Model”, Bulletin of the South Ural State University. Series: Mathematical Modeling and Programming and Computer Software, 7:2 (2014), 124–128 | DOI | Zbl