On calculating of functional derivative for an optimal control problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 51-67
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The synthesis problem of a multilayer diffraction grating is formulated as an optimal control problem and consists in minimizing the cost functional depending on the geometric parameters of the grating profile. The gradient method is the most reliable and stable method for solving this problem. The paper deals with a method for calculating the gradient of the cost functional, which is done by solving a cojugate problem with special boundary conditions. Additionally, the paper discusses the numerical implementation of this solution and the calculation of the gradient. The results from a computational experiment are also presented.
Keywords: functional derivative, conjugate problem, optimal control problem, synthesis problem, diffraction gratings.
Mots-clés : gradient
@article{VYURU_2024_17_2_a4,
     author = {M. O. Korpusov and M. V. Artemeva},
     title = {On calculating of functional derivative for an optimal control problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {51--67},
     year = {2024},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - M. V. Artemeva
TI  - On calculating of functional derivative for an optimal control problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 51
EP  - 67
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a4/
LA  - ru
ID  - VYURU_2024_17_2_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A M. V. Artemeva
%T On calculating of functional derivative for an optimal control problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 51-67
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a4/
%G ru
%F VYURU_2024_17_2_a4
M. O. Korpusov; M. V. Artemeva. On calculating of functional derivative for an optimal control problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 51-67. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a4/

[1] C. Palmer, E. Loewen, Diffraction Grating Handbook, Newport Corporation, New York, 2005

[2] E.G. Loewen, E. Popov, Diffraction Gratings and Application, Marcel Dekker, New York, 1997

[3] Fedorenko R.P., Approximate Solution of Optimal Control Problems, Nauka, M., 1978

[4] Artemeva M.V., Bogolyubov A.N., Petukhov A.A., “Solving Diffraction Grating Synthesis Problems for Practical Applications”, Physical Bases of Instrumentation, 9:3 (2020), 4–13 | DOI | DOI

[5] Artemeva M.V., Bogolyubov A.N., Petukhov A.A., “Transfer Matrix Method for Solving the Problem of Diffraction of a Plane Wave with Te-Polarization on a One-Dimensional Binary Diffraction Grating”, Physical Bases of Instrumentation, 11:2 (2022), 40–48 | DOI | MR

[6] Petukhov A.A., Bogolyubov A.N., Trubetskov M.K., “Mathematical Modeling of Multilayer Diffraction Gratings”, Physical Bases of Instrumentation, 3:4 (2014), 20–27 | DOI | DOI

[7] Lu Nan, Dengfeng Kuang, Guoguang Mu, “Design of Transmission Blazed Binary Gratings for Optical Limiting with the Form-Birefringence Theory”, Applied Optics, 47:21 (2008), 3743–3750 | DOI