Keywords: relatively bounded operator, Lyapunov stability, local flow of operators, asymptotic stability.
@article{VYURU_2024_17_2_a3,
author = {M. A. Sagadeeva and S. A. Zagrebina},
title = {Stability of a stationary solution to non-autonomous linearized {Hoff} model on a~geometrical graph},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {40--50},
year = {2024},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/}
}
TY - JOUR AU - M. A. Sagadeeva AU - S. A. Zagrebina TI - Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 40 EP - 50 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/ LA - ru ID - VYURU_2024_17_2_a3 ER -
%0 Journal Article %A M. A. Sagadeeva %A S. A. Zagrebina %T Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 40-50 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/ %G ru %F VYURU_2024_17_2_a3
M. A. Sagadeeva; S. A. Zagrebina. Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 40-50. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/
[1] Hoff N.J., The Analysis of Structures, John Wiley, New York; Chapman and Hall, London, 1956 | Zbl
[2] Sviridyuk G.A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl
[3] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[4] G.V. Demidenko, S.V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker Inc, New York–Basel–Hong Kong, 2003 | MR | Zbl
[5] Al'shin A.B., Korpusov M.O., Sveshnikov A.G., Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011 | MR | Zbl
[6] Sviridyuk G.A., Zagrebina S.A., “Nonclassical Mathematical Physics Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 40(299), 7–18 | Zbl
[7] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Differential Equations on Geometric Graphs, Fizmatlit, M., 2004 (in Russian)
[8] Sviridyuk G.A., “Sobolev Type Equations on a Graph”, Non-Classical Equations of Mathematical Physics, Novosibirsk, 2002, 221–225 (in Russian) | MR | Zbl
[9] Sviridyuk G.A., Shemetova V.V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | MR | Zbl
[10] Sviridyuk G.A., Bayazitova A.A., “On Direct and Inverse Problems for the Hoff Equations on Graph”, Journal of Samara State Technical University. Series: Physical and Mathematical Sciences, 2009, no. 1(18), 6–17 | DOI | Zbl
[11] Manakova N.A., Dylkov A.G., “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:2 (2013), 220–230 | DOI | DOI | MR | Zbl
[12] Sagadeeva M.A., Dichotomies of the Solutions for the Linear Sobolev Type Equations, Izdatel'skij centr YUUrGU, Chelyabinsk, 2012 (in Russian) | MR
[13] Zagrebina S.A., Moskvicheva P.O., Stability in Hoff Models, LAMBERT Academic Publishing, Saarbrücken, 2012 (in Russian)
[14] Sagadeeva M.A., Investigation of Solutions Stability for Linear Sobolev Type Equations, PhD (Math) Thesis, Chelyabinsk, 2006, 120 pp. (in Russian) | MR
[15] Keller A.V., Sagadeeva M.A., “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 134–138 | DOI | Zbl
[16] “The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: The Stability of Solutions and the Optimal Control Problem/~M.A. Sagadeeva, G.A. Sviridyuk”, Semigroups of Operators, Springer Proceedings in Mathematics and Statistics, 113, 2015, 257–271 | DOI | MR | Zbl
[17] M.A. Sagadeeva, “Mathematical Bases of Optimal Measurements Theory in Nonstationary Case”, Journal of Computational and Engineering Mathematics, 3:3 (2016), 19–32 | DOI | MR | Zbl
[18] Sagadeeva M.A., “Degenerate Flows of Solving Operators for Nonstationary Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 9:1 (2017), 22–30 | DOI | Zbl
[19] M.A. Sagadeeva, A.V. Generalov, “Numerical Solution for Non-Stationary Linearized Hoff Equation Defined on Geometrical Graph”, Journal of Computational and Engineering Mathematics, 5:3 (2018), 61–74 | DOI | MR
[20] Buevich A.V., Sagadeeva M.A., Zagrebina S.A., “Stability of a Stationary Solution to One Class of Non-Autonomous Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16:3 (2023), 77–86 | DOI