Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 40-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the study of the stability of a stationary solution for a non-autonomous linearized Hoff model on a geometric graph. This model makes it possible to describe a structure made of I-beams that is under external pressure and high temperatures. Using the stability conditions of a stationary solution for such a model, it is possible to describe the stability conditions of the structure described by this model on a geometric graph. Note that for the linearized Hoff model, the exponential dichotomy method cannot be applied, since the relative spectrum of the operator equation may intersect with the imaginary axis. Therefore, we use the second Lyapunov method to study of the stability. In addition to the introduction and the list of references, the article contains two parts. In the first of them, the conditions for the solvability of a non-autonomous linearized Hoff model on a geometric graph are given, and in the second, the stability of the stationary solution of this model is investigated.
Mots-clés : Sobolev type equations
Keywords: relatively bounded operator, Lyapunov stability, local flow of operators, asymptotic stability.
@article{VYURU_2024_17_2_a3,
     author = {M. A. Sagadeeva and S. A. Zagrebina},
     title = {Stability of a stationary solution to non-autonomous linearized {Hoff} model on a~geometrical graph},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {40--50},
     year = {2024},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - S. A. Zagrebina
TI  - Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 40
EP  - 50
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/
LA  - ru
ID  - VYURU_2024_17_2_a3
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A S. A. Zagrebina
%T Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 40-50
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/
%G ru
%F VYURU_2024_17_2_a3
M. A. Sagadeeva; S. A. Zagrebina. Stability of a stationary solution to non-autonomous linearized Hoff model on a geometrical graph. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 40-50. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a3/

[1] Hoff N.J., The Analysis of Structures, John Wiley, New York; Chapman and Hall, London, 1956 | Zbl

[2] Sviridyuk G.A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl

[3] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl

[4] G.V. Demidenko, S.V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker Inc, New York–Basel–Hong Kong, 2003 | MR | Zbl

[5] Al'shin A.B., Korpusov M.O., Sveshnikov A.G., Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011 | MR | Zbl

[6] Sviridyuk G.A., Zagrebina S.A., “Nonclassical Mathematical Physics Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 40(299), 7–18 | Zbl

[7] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Differential Equations on Geometric Graphs, Fizmatlit, M., 2004 (in Russian)

[8] Sviridyuk G.A., “Sobolev Type Equations on a Graph”, Non-Classical Equations of Mathematical Physics, Novosibirsk, 2002, 221–225 (in Russian) | MR | Zbl

[9] Sviridyuk G.A., Shemetova V.V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | MR | Zbl

[10] Sviridyuk G.A., Bayazitova A.A., “On Direct and Inverse Problems for the Hoff Equations on Graph”, Journal of Samara State Technical University. Series: Physical and Mathematical Sciences, 2009, no. 1(18), 6–17 | DOI | Zbl

[11] Manakova N.A., Dylkov A.G., “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:2 (2013), 220–230 | DOI | DOI | MR | Zbl

[12] Sagadeeva M.A., Dichotomies of the Solutions for the Linear Sobolev Type Equations, Izdatel'skij centr YUUrGU, Chelyabinsk, 2012 (in Russian) | MR

[13] Zagrebina S.A., Moskvicheva P.O., Stability in Hoff Models, LAMBERT Academic Publishing, Saarbrücken, 2012 (in Russian)

[14] Sagadeeva M.A., Investigation of Solutions Stability for Linear Sobolev Type Equations, PhD (Math) Thesis, Chelyabinsk, 2006, 120 pp. (in Russian) | MR

[15] Keller A.V., Sagadeeva M.A., “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 134–138 | DOI | Zbl

[16] “The Nonautonomous Linear Oskolkov Model on a Geometrical Graph: The Stability of Solutions and the Optimal Control Problem/~M.A. Sagadeeva, G.A. Sviridyuk”, Semigroups of Operators, Springer Proceedings in Mathematics and Statistics, 113, 2015, 257–271 | DOI | MR | Zbl

[17] M.A. Sagadeeva, “Mathematical Bases of Optimal Measurements Theory in Nonstationary Case”, Journal of Computational and Engineering Mathematics, 3:3 (2016), 19–32 | DOI | MR | Zbl

[18] Sagadeeva M.A., “Degenerate Flows of Solving Operators for Nonstationary Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 9:1 (2017), 22–30 | DOI | Zbl

[19] M.A. Sagadeeva, A.V. Generalov, “Numerical Solution for Non-Stationary Linearized Hoff Equation Defined on Geometrical Graph”, Journal of Computational and Engineering Mathematics, 5:3 (2018), 61–74 | DOI | MR

[20] Buevich A.V., Sagadeeva M.A., Zagrebina S.A., “Stability of a Stationary Solution to One Class of Non-Autonomous Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16:3 (2023), 77–86 | DOI