@article{VYURU_2024_17_2_a2,
author = {A. V. Ryazhskikh},
title = {Pressure laminar flow of a {Brownian} suspension in a flat channel},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {29--39},
year = {2024},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a2/}
}
TY - JOUR AU - A. V. Ryazhskikh TI - Pressure laminar flow of a Brownian suspension in a flat channel JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 29 EP - 39 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a2/ LA - ru ID - VYURU_2024_17_2_a2 ER -
%0 Journal Article %A A. V. Ryazhskikh %T Pressure laminar flow of a Brownian suspension in a flat channel %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 29-39 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a2/ %G ru %F VYURU_2024_17_2_a2
A. V. Ryazhskikh. Pressure laminar flow of a Brownian suspension in a flat channel. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 2, pp. 29-39. http://geodesic.mathdoc.fr/item/VYURU_2024_17_2_a2/
[1] M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Techology Handbook, Elsevier, New York, 2008
[2] S. Thomas, C. Sarathehandran, N. Chandran, Rheology of Polymer Blends and Nanocompo-Sites. Theory, Modeling and Applications, Elsevier, New-York, 2020
[3] P.G Saffman, “On the Stability of Laminar Flow of Dusty Gas”, Journal of Fluid Mechanics, 13:1 (1962), 120–128 | DOI | MR | Zbl
[4] B.K. Jha, C.A. Apere, “Unsteady Two-Phase Couette Flow of Fluid-Partical Suspension”, Applied Mathematical Modelling, 37:4 (2013), 1920–1931 | DOI | MR | Zbl
[5] S.G. Yiantsios, “Plane Poiseulle Flow of a Sedimenting Suspension of Brownian Hard-Sphere Particle: Hydrodynamic Stability and Direct Numerical Simulations”, Physics of Fluids, 18 (2006), 054103, 13 pp. | DOI
[6] M.E. Haque, M.S. Hossain, H.M. Ali, “Laminar Forced Convection Heat Transfer of Nanofluids Inside Non-Circular Ducts: A Review”, Powder Technology, 378 (2021), 808–830 | DOI
[7] Nigmatulin R.I., Fundamentals of Mechanics of Heterogeneous Media, Nauka, M., 1978 (in Russian) | MR
[8] Fortier A., Suspension Mechanics, Mir, M., 1971 (in Russian)
[9] C. Morel, Mathematical Modeling of Disperse Two-Phase Flows, Springer International Publishing Switzerland, Cham, 2015 | MR | Zbl
[10] H. Khawaja, M. Moatamedi, Multiphysics Modeling of Fluid-Particulate System, Academic Press, New-York, 2020
[11] M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two phase Flow, Springer, New-York, 2006 | MR | Zbl
[12] S.M. Peker, Solid-Liquid Two Phase Flow, Elsevier Science, New-York, 2008
[13] Nevskii Yu.A., Osiptsov A.N., “Modeling Gravitational Convection in Suspensions”, Technical Physics Letters, 35:4 (2009), 340–343 | DOI
[14] Guan Heng Yeoh, Jiyuan Tu, Computational Techniques for Multiphase Flows, Butterworth-Heinemann, Oxford, 2019
[15] F. Municchi, P. Nagrani, I.C. Christov, “A Two-Model for Numerical Simulation of Shear-Dominated Suspension Flows”, International Journal of Multiphase Flow, 120 (2019), 103079, 23 pp. | DOI | MR
[16] D.A. Drew, “Mathematical Modeling of Two-Phase Flow”, Annual Review of Fluid Mechanics, 15 (1983), 261–291 | DOI | Zbl
[17] C.K. Lun, S.B. Savage, “The Effects of an Impact Velocity Depended Coefficient of Restitution on Stresses Developed by Sheared Granular Materials”, Acta Mechanica, 63 (1986), 15–44 | DOI | Zbl
[18] D.L. Koch, “Kinetic Theory for a Monodisperse Gas-Solid Suspension”, Physics of Fluids A, 2:10 (1990), 1711–1723 | DOI | Zbl
[19] J.F. Brady, “The Rheological Behavior of Concentrated Colloidal Dispersions”, Journal of Chemical Physics, 99 (1993), 567–581 | DOI
[20] S.Z. Heris, F. Ahmadi, O. Mahian, “Pressure Drop and Performance Characteristics of Water-Based Al${}_{2}$O${}_{3}$ i CuO Nanofluids in a Triangular Duct”, Journal of Dispersion Science and Technology, 34 (2013), 1368–1375 | DOI
[21] T. Lorenzo, L. Marco, “Brownian Dynamic Simulations of Shear-Induced Aggregation of Charged Colloidal Particles in the Presence of Hydrodynamic Interactions”, Journal of Colloid and Interface Science, 624 (2022), 637–649 | DOI
[22] M.K. Lyon, L.G. Leal, “An Experimental Study of the Motion of Concentrated Suspensions in Two-Dimensional Channel Flow. Part 1. Monodisperse Systems”, Journal Fluid Mechanics, 363 (1998), 25–56 | DOI | Zbl
[23] R.J. Phillips, R.C. Armstrong, R.A. Brown, “A Constitutive Equation for Concentrated Suspensions that Accounts for Shear-Induced Particle Migration”, Physics of Fluids A, 4 (1992), 30–40 | DOI | Zbl
[24] Landau L.D., Lifshits Ye.M., Theoretical Physics. Hydrodynamics, Nauka, M., 1988 (in Russian)
[25] D. Gidaspow, Multiphase Flow and Fluidization, Academic Press, New York, 1994 | MR | Zbl
[26] J.F. Morris, J.F. Brady, “Pressure-Driven Flow of a Suspensions: Buoyancy Effects”, International Journal of Multiphase Flow, 24:1 (1998), 105–130 | DOI | Zbl
[27] C.J. Koh, P. Hookham, “An Experimental Investigation of Concentrated Suspension Flows in a Rectangular Channel”, Journal Fluid Mechanics, 226 (1994), 1–32 | DOI