Mots-clés : Sobolev type equations
@article{VYURU_2024_17_1_a4,
author = {N. G. Nikolaeva and O. V. Gavrilova and N. A. Manakova},
title = {Investigation of the uniqueness solution of the {Showalter{\textendash}Sidorov} problem for the mathematical {Hoff} model. {Phase} space morphology},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {49--63},
year = {2024},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a4/}
}
TY - JOUR AU - N. G. Nikolaeva AU - O. V. Gavrilova AU - N. A. Manakova TI - Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 49 EP - 63 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a4/ LA - en ID - VYURU_2024_17_1_a4 ER -
%0 Journal Article %A N. G. Nikolaeva %A O. V. Gavrilova %A N. A. Manakova %T Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 49-63 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a4/ %G en %F VYURU_2024_17_1_a4
N. G. Nikolaeva; O. V. Gavrilova; N. A. Manakova. Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 49-63. http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a4/
[1] Sviridyuk G.A., “The Manifold of Solutions of an Operator Singular Pseudoparabolic Equation”, Doklady Akademii Nauk SSSR, 289:6 (1986), 1–31 (in Russian) | MR
[2] Pyatkov S.G., “Boundary Value and Inverse Problems for Some Classes of Nonclassical Operator-Differential Equations”, Siberian Mathematical Journal, 62:3 (2021), 489–502 | DOI | MR | Zbl
[3] Al'shin A.B., Korpusov M.O., Sveshnikov A.G., Blow-Up in Nonlinear Sobolev Type Equations, Walter de Gruyter, Berlin, 2011 | DOI | MR
[4] Keller A.V., Zagrebina S.A., “Some Generalizations of the Showalter–Sidorov Problem for Sobolev-Type Models”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 8:2 (2015), 5–23 | DOI | Zbl
[5] Zamyshlyaeva A.A., Sviridyuk G.A., “Nonclassical Equations of Mathematical Physics. Linear Sobolev Type Equations of Higher Order”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 8:4 (2016), 5–16 | DOI | MR | Zbl
[6] Hoff N.J., “Creep Buckling”, Journal of the Aeronautical Science, 1956, no. 7, 1–20
[7] Bayazitova A.A., “The Showalter–Sidorov Problem for the Hoff Model on a Geometric Graph”, The Bulletin of Irkutsk State University. Series: Mathematics, 4:1 (2011), 2–8 (in Russian) | Zbl
[8] Sviridyuk G.A., Shemetova V.V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | MR | Zbl
[9] Shafranov D.E., Shvedchikova A.I., “The Hoff Equation as a Model of Elastic Shell”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 18(227):12 (2012), 77–81 | Zbl
[10] Sidorov N.A., Romanova O.A., “On Application of Some Results of the Branching Theory in the Process of Solving Differential Equations with Degeneracy”, Differential Equations, 19:9 (1983), 1516–1526 | MR | Zbl
[11] Sviridyuk G.A., Zagrebina S.A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev Type Equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 (in Russian) | MR | Zbl
[12] Manakova N.A., Gavrilova O.V., Perevozchikova K.V., “Semilinear Models of Sobolev Type. Non-Uniqueness of Solution to the Showalter–Sidorov Problem”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 15:1 (2022), 84–100 | DOI | Zbl
[13] Gil'mutdinova A.F., “On the Non-Uniqueness of Solutions of Showalter–Sidorov Problem for One Plotnikov Model”, Vestnik of Samara State University, 2007, no. 9/1, 85–90 (in Russian) | MR | Zbl
[14] Bokareva T.A., Sviridyuk G.A., “Whitney Folds in Phase Spaces of Some Semilinear Sobolev-Type Equations”, Mathematical Notes, 55:3 (1994), 237–242 | DOI | MR | Zbl
[15] Sviridyuk G.A., Sukacheva T.G., “The Phase Space of a Class of Operator Equations of Sobolev Type”, Differential Equations, 26:2 (1990), 250–258 (in Russian) | MR | Zbl
[16] Sviridyuk G.A., Kazak V.O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:1-2 (2002), 262–266 | DOI | MR | Zbl
[17] Sviridyuk G.A., Trineeva I.K., “A Whitney Fold in the Phase Space of the Hoff Equation”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:10 (2005), 49–55 | MR | Zbl
[18] Gavrilova O.V., Nikolaeva N.G., “Numerical Study of the Non-Uniqueness of Solutions to the Showalter–Sidorov Problem for a Mathematical Model of I-beam Deformation”, Journal of Computational and Engineering Mathematics, 9:1 (2022), 10–23 | DOI | Zbl
[19] Sviridyuk G.A., Sukacheva T.G., “Galerkin Approximations of Singular Nonlinear Equations of Sobolev Type”, Izvestiya VUZ. Matematika, 33:10 (1989), 56–59 | MR | Zbl
[20] Bogatyreva E.A., Manakova N.A., “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbibition”, Computational Mathematics and Mathematical Physics, 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl
[21] Bychkov E.V., “Analytical Study of the Mathematical Model of Wave Propagation in Shallow Water by the Galerkin Method”, Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 14:1 (2021), 26–38 | DOI | Zbl
[22] Manakova N.A., Sviridyuk G.A., “Nonclassical Equations of Mathematical Physics. Phase Space of Semilinear Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 8:3 (2016), 31–51 | DOI | Zbl