Mots-clés : extrapolation
@article{VYURU_2024_17_1_a3,
author = {B. A. Lagovsky and I. A. Nasonov and E. Y. Rubinovich},
title = {Solving inverse problems of obtaining super-resolution using neural networks},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {37--48},
year = {2024},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a3/}
}
TY - JOUR AU - B. A. Lagovsky AU - I. A. Nasonov AU - E. Y. Rubinovich TI - Solving inverse problems of obtaining super-resolution using neural networks JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 37 EP - 48 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a3/ LA - ru ID - VYURU_2024_17_1_a3 ER -
%0 Journal Article %A B. A. Lagovsky %A I. A. Nasonov %A E. Y. Rubinovich %T Solving inverse problems of obtaining super-resolution using neural networks %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 37-48 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a3/ %G ru %F VYURU_2024_17_1_a3
B. A. Lagovsky; I. A. Nasonov; E. Y. Rubinovich. Solving inverse problems of obtaining super-resolution using neural networks. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 37-48. http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a3/
[1] M.S. Almeida, M.A. Figueiredo, “Deconvolving Images with Unknown Boundaries Using the Alternating Direction Method of Multipliers”, IEEE Transactions on Image Processing, 22:8 (2013), 3074–3086 | DOI | MR | Zbl
[2] M. Dudik, S.J. Phillips, R.E. Schapire, “Maximum Entropy Density Estimation with Generalized Regularization and an Application to Species Distribution Modeling”, Journal of Machine Learning Research, 2007, no. 8, 1217–1260 | MR | Zbl
[3] W.Q. Tan, Y.G. Hou, “Estimation Of Direction of Source Arrival Based upon MUSIC and Capon”, Journal of Nanchang Institute of Technology, 27:1 (2008), 20–23
[4] E.J. Candes, C. Fernandez-Granda, “Super-Resolution from Noisy Data”, Journal of Fourier Analysis and Applications, 19:6 (2013), 1229–1254, arXiv: 1211.0290 | DOI | MR
[5] Shchukin A.A., Pavlov A.E., “Parameterization of User Functions in Digital Signal Processing for Obtaining Angular Superresolution”, Russian Technological Journal, 10:4 (2022), 38–43 | DOI
[6] B. Lagovsky, “Superresolution by Extrapolation for Solving Remote Sensing Problems”, Proceedings of the 25th International Crimean Conference Microwave and Telecommunication Technology, 2015, 1144–1146
[7] Tikhonov A.N., Arsenin V.Ya., Methods of Solving Ill-Posed Problems, Nauka, M., 1974 (in Russian)
[8] I.S. Uzun, A. Amira, A. Bouridane, “FPGA Implementations of Fast Fourier Transforms for Real-Time Signal and Image Processing”, IEE Proceedings-Vision, Image and Signal Processing, 152:3 (2005), 83–296 | DOI
[9] T. Abtahi, C. Shea, A. Kulkarni, T. Mohsenin, “Accelerating Convolutional Neural Network with FFT on Embedded Hardware”, IEEE Transactions on Very Large Scale Integration Systems, 26:9 (2018), 1737–1749 | DOI
[10] H. Pratt, B.M. Williams, F. Coenen, Yalin Zheng, “Fcnn: Fourier Convolutional Neural Networks”, Machine Learning and Knowledge Discovery in Databases, European Conference, Skopje, 2017, 786–798 | DOI
[11] Xiaolong Chen, Jiang Qiaowen, Su Ningyuan, Chen Baoxin, Guan Jian, “LFM Signal Detection and Estimation Based on Deep Convolutional Neural Network”, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (Lanzhou, 2019), 753–758 | DOI
[12] ChiYan Lee, Hasegawa Hideyuki, Gao Shangce, “Complex-Valued Neural Networks: A Comprehensive Survey”, Journal of Automatica Sinica, 9:8 (2022), 1406–1426 | DOI
[13] J. Bassey, Lijun Qian, Xianfang Li, Machine Learning, 2021, 15 pp., arXiv: 2101.12249 | Zbl
[14] P.V. Lysenko, I.A. Nasonov, A.A. Galyaev, L.M. Berlin, “Deep Learning Approach to Classification of Acoustic Signals using Information Features”, Doklady RAN. Mathematika, Informatika, Processy Upravlenia, 514:2 (2023), 39–48 | DOI | MR
[15] H.I.Fawaz, B. Lucas, G. Forestier, et al., “Inceptiontime: Finding Alexnet for Time Series Classification”, Data Mining and Knowledge Discovery, 34:6 (2020), 1936–1962 | DOI | MR
[16] H.I. Fawaz, “Deep Learning for Time Series Classification”, Data Mining and Knowledge Discovery, 33 (2019), 917–963 | DOI | MR | Zbl
[17] Sun Jingyu, Takeuchi Susumu, Yamasaki Ikuo, “Prototypical Inception Network with Cross Branch Attention for Time Series Classification”, International Joint Conference on Neural Networks (Shenzhen, 2021), 1–7
[18] Gong Xueyuan,Si Yain-Whar, et al., “KDCTime: Knowledge Distillation with Calibration on InceptionTime for Time-Series Classification”, Information Sciences, 613 (2022), 184–203 | DOI
[19] G Pialla, M. Devanne, J. Weber, L. Idoumghar, G. Forestier, “Data Augmentation for Time Series Classification with Deep Learning Models”, International Workshop on Advanced Analytics and Learning on Temporal Data (Grenoble, 2022), 117–132 | DOI
[20] Yang Hong, T. Desell, “Robust Augmentation for Multivariate Time Series Classification”, Machine Learning, 2022, 11 pp., arXiv: 2201.11739
[21] D.T. Gillespie, “Exact Numerical Simulation of the Ornstein-Uhlenbeck Process and its Integral”, Physical Review E, 54:2 (1996), 2084 | DOI
[22] A.A. Galyaev, A.I. Medvedev, I.A. Nasonov, “Neural Network Algorithm for Intercepting Targets Moving Along Known Trajectories by a Dubins' Car”, Automation and Remote Control, 84:3 (2023), 3–21 | DOI | MR | Zbl
[23] P. Baldi, P.J. Sadowski, “Understanding Dropout”, Advances in Neural Information Processing Systems, 26 (2013), 9 pp.
[24] S. Bock, M. Weib, “A Proof of Local Convergence for the Adam Optimizer”, International Joint Conference On Neural Networks (Budapest, 2019), 1–8 | DOI