Mots-clés : invariant description.
@article{VYURU_2024_17_1_a2,
author = {A. V. Kolnogorov},
title = {Invariant description of control in a {Gaussian} one-armed bandit problem},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {27--36},
year = {2024},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a2/}
}
TY - JOUR AU - A. V. Kolnogorov TI - Invariant description of control in a Gaussian one-armed bandit problem JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 27 EP - 36 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a2/ LA - en ID - VYURU_2024_17_1_a2 ER -
%0 Journal Article %A A. V. Kolnogorov %T Invariant description of control in a Gaussian one-armed bandit problem %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 27-36 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a2/ %G en %F VYURU_2024_17_1_a2
A. V. Kolnogorov. Invariant description of control in a Gaussian one-armed bandit problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 27-36. http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a2/
[1] Berry D.A., Fristedt B., Bandit Problems: Sequential Allocation of Experiments, Chapman and Hall, London–New York, 1985 | MR | Zbl
[2] Presman E.L., Sonin I.M., Sequential Control with Incomplete Information, Academic Press, New York, 1990 | MR | Zbl
[3] Tsetlin M.L., Automaton Theory and Modeling of Biological Systems, Academic Press, New York, 1973 | MR
[4] Sragovich V.G., Mathematical Theory of Adaptive Control, World Scientific, Singapore, 2006 | MR | Zbl
[5] Gittins J.C., Multi-Armed Bandit Allocation Indices, John Wiley and Sons, Chichester, 1989 | MR | Zbl
[6] Lattimore T., Szepesvari C., Bandit Algorithms, Cambridge University Press, Cambridge, 2020 | Zbl
[7] Kolnogorov A.V., “One-Armed Bandit Problem for Parallel Data Processing Systems”, Problems of Information Transmission, 51:2 (2015), 177–191 | DOI | MR | Zbl
[8] Perchet V., Rigollet P., Chassang S., Snowberg E., “Batched Bandit Problems”, The Annals of Statistics, 44:2 (2016), 660–681 | DOI | MR | Zbl
[9] Vogel W., “An Asymptotic Minimax Theorem for the Two-Armed Bandit Problem”, The Annals of Mathematical Statistics, 31:2 (1960), 444–451 | DOI | MR | Zbl
[10] Kolnogorov A., “Gaussian One-Armed Bandit Problem”, 2021 XVII International Symposium “Problems of Redundancy in Information and Control Systems”, Institute of Electrical and Electronics Engineers, M., 2021, 74–79 | DOI | MR
[11] Bradt R.N., Johnson S.M., Karlin S., “On Sequential Designs for Maximizing the Sum of $n$ Observations”, The Annals of Mathematical Statistics, 27 (1956), 1060–1074 | DOI | MR | Zbl
[12] Chernoff H., Ray S.N., “A Bayes Sequential Sampling Inspection Plan”, The Annals of Mathematical Statistics, 36 (1965), 1387–1407 | DOI | MR | Zbl
[13] Kolnogorov A.V., “Gaussian One-Armed Bandit with Both Unknown Parameters”, Siberian Electronic Mathematical Reports, 19:2 (2022), 639–650 http://semr.math.nsc.ru/v19n2ru.html | MR