@article{VYURU_2024_17_1_a1,
author = {O. G. Kitaeva},
title = {Stability of solutions to the stochastic {Oskolkov} equation and stabilization},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {17--26},
year = {2024},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a1/}
}
TY - JOUR AU - O. G. Kitaeva TI - Stability of solutions to the stochastic Oskolkov equation and stabilization JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2024 SP - 17 EP - 26 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a1/ LA - en ID - VYURU_2024_17_1_a1 ER -
%0 Journal Article %A O. G. Kitaeva %T Stability of solutions to the stochastic Oskolkov equation and stabilization %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2024 %P 17-26 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a1/ %G en %F VYURU_2024_17_1_a1
O. G. Kitaeva. Stability of solutions to the stochastic Oskolkov equation and stabilization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 17-26. http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a1/
[1] Oskolkov A.P., “Nonlocal Problems for Some Class Nonlinear Operator Equations Arising in the Theory Sobolev Type Equations”, Journal of Mathematical Sciences, 64:1 (1993), 724–736 | DOI | MR | Zbl
[2] Sviridyuk G.A., Yakupov M.M., “The Phase Space of the Initial-Boundary Value Problem for the Oskolkov System”, Differential Equations, 32:11 (1996), 1535–1540 | MR | Zbl
[3] Kitaeva O.G., “Invariant Manifolds of Semilinear Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 15:1 (2022), 101–111 | DOI | Zbl
[4] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | DOI | MR | Zbl
[5] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noises””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 | DOI | Zbl
[6] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015, 69741, 8 pp. | DOI | MR
[7] Favini A., Sviridyuk G.A., Sagadeeva M.A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[8] Vasiuchkova K.V., Manakova N.A., Sviridyuk G.A., “Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise” in Spaces of Sequences”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:4 (2017), 5–14 | DOI | Zbl
[9] Vasiuchkova K.V., Manakova N.A., Sviridyuk G.A., “Degenerate Nonlinear Semigroups of Operators and their Applications”, Semigroups of Operators – Theory and Applications. SOTA 2018, Springer Proceedings in Mathematics and Statistics, 325, Springer, Cham, 2020, 363–378 | DOI | MR | Zbl
[10] Kitaeva O.G., “Invariant Spaces of Oskolkov Stochastic Linear Equations on the Manifold”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 13:2 (2021), 5–10 | DOI
[11] Kitaeva O.G., “Exponential Dichotomies of a Non-Classical Equations of Differential Forms on a Two-Dimensional Torus with “Noises””, Journal of Computational and Engineering Mathematics, 6:3 (2019), 26–38 | DOI | MR | Zbl
[12] Kitaeva O.G., “Dichotomies of Solutions to the Stochastic Ginzburg–Landau Equation on a Torus”, Journal of Computational and Engineering Mathematics, 7:4 (2020), 17–25 | DOI | MR
[13] Kitaeva O.G., “Exponential Dichotomies of a Stochastic Non-Classical Equation on a Two-Dimensional Sphere”, Journal of Computational and Engineering Mathematics, 8:1 (2021), 60–67 | DOI | MR
[14] Kitaeva O.G., “Invariant Manifolds of the Hoff Model in “Noises” Spaces”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 14:4 (2021), 24–35 | DOI | MR | Zbl
[15] Kitaeva O.G., “Invariant Manifolds of the Stochastic Benjamin–Bona–Mahony Equation”, Global and Stochastic Analysis, 9:3 (2022), 9–17
[16] Kitaeva O.G., “Stabilization of the Stochastic Barenblatt–Zheltov–Cochina Equation”, Journal of Computational and Engineering Mathematics, 10:1 (2023), 21–29 | DOI