Mathematical modelling of flame propagation in hydrogen-air mixtures
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The development of hydrogen power engineering is inextricably linked to the provision of hydrogen safety and the study of processes occurring during combustion of mixtures containing hydrogen. The use of numerical simulation allows us to study the behaviour of the system in the ranges of variation of the main parameters not covered by experimental data. This paper presents a model allowing to simulate the flow of chemically reacting continuous media verified on experimental data on flame propagation in a shock tube with orifice plates filled with hydrogen-air mixture.
Keywords: hydrogen, ignition, induction period, kinetic models.
@article{VYURU_2024_17_1_a0,
     author = {P. E. Belyaev and M. S. Aetpaeva and Yu. M. Kovalev and E. E. Pigasov},
     title = {Mathematical modelling of flame propagation in hydrogen-air mixtures},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--16},
     year = {2024},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a0/}
}
TY  - JOUR
AU  - P. E. Belyaev
AU  - M. S. Aetpaeva
AU  - Yu. M. Kovalev
AU  - E. E. Pigasov
TI  - Mathematical modelling of flame propagation in hydrogen-air mixtures
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2024
SP  - 5
EP  - 16
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a0/
LA  - ru
ID  - VYURU_2024_17_1_a0
ER  - 
%0 Journal Article
%A P. E. Belyaev
%A M. S. Aetpaeva
%A Yu. M. Kovalev
%A E. E. Pigasov
%T Mathematical modelling of flame propagation in hydrogen-air mixtures
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2024
%P 5-16
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a0/
%G ru
%F VYURU_2024_17_1_a0
P. E. Belyaev; M. S. Aetpaeva; Yu. M. Kovalev; E. E. Pigasov. Mathematical modelling of flame propagation in hydrogen-air mixtures. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 17 (2024) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/VYURU_2024_17_1_a0/

[1] Arutyunov V.S., “Problems and Challenges of Hydrogen Energy”, Combustion and Plasma Chemistry, 19:4 (2021), 245–255 (n Russian) | DOI

[2] Gel'fand B.E., Popov O.E., Chajvanov B.B., Hydrogen: Combustion and Explosion Parameters, Fizmatlit, M., 2008

[3] S.B. Dorofeev, V.P. Sidorov, A.E. Dvoinishnikov, W. Breitung, “Deflagration to Detonation Transition in Large Confined Volume of Lean Hydrogen-Air Mixtures”, Combustion and Flame, 104:1-2 (1996), 95–110 | DOI

[4] A. Veser, W. Breitung, G. Engel, et al., Deflagration to Detonation Transition Experiments with Hydrogen-Air Mixtures in Shock Tube and Obstacle Array Geometries, Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1999

[5] Bazhenova T.V., Bragin M.V., Golub V.V., Ivanov M.F., “Shock-Wave Mechanism of Spontaneous Ignition of Hydrogen in Case of Sudden Discharge From a High-Pressure Tank”, High Temperature Apparatuses and Structures, 45 (2007), 733–740 (n Russian) | DOI

[6] Lu-Qing Wang, Hong-Hao Ma, Zhao-Wu Shen, et al., “Experimental Study of Detonation Propagation in a Square Tube Filled with Orifice Plates”, International Journal of Hydrogen Energy, 43:9 (2018), 4645–4656 | DOI

[7] Nigmatulin R.I., Dynamics of Multiphase Media, Nauka, M., 1987 (n Russian) | MR

[8] Kovalev Yu.M., Kuropatenko V.F., “Analysis of the Invariance Some Mathematical Models of Multicomponent Media”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 11 (2012), 4–7 (n Russian) | Zbl

[9] Kovalev Yu.M., Pigasov E.E., “A Mathematical Model of a Gas Suspension with Chemical Transformations in the Approximation of Paired Interactions”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming, 7:3 (2014), 40–49 (n Russian) | DOI | Zbl

[10] Oran E., Boris Dzh., Numerical Simulation of Reacting Flows, Cambridge University Press, Cambridge, 2000 | DOI

[11] Warnatz J., Maas U., Dibble R.W., Combustion. Physical and Chemical Aspects, Modeling, Experiments, Formation of Pollutants, Springer Science and Business Media, Berlin–Heidelberg–New York–Barcelona–Hong Kong–London–Milan–Paris–Singapore–Tokyo, 2006

[12] Hirschfelder J.O., Curtiss C.F., Bird R.B., The Molecular Theory of Gases and Liquids, Wiley, New York, 1954 | Zbl

[13] Belyaev P.E., Makeeva I.R., Pigasov E.E., Mastyuk D.A., “Adaptation of Kuropatenko Method for Calculating Shock Waves in Euler Coordinates”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming, 14:1 (2021), 83–96 (n Russian) | DOI | MR

[14] Ryabinin V.K., Kovalev Yu.M., “Mathematical Modeling of the Adiabatic Induction Period for Oxygen-Methane Mixtures in a Wide Range of Initial Pressures and Temperatures”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming, 6:1 (2013), 56–71 (n Russian)

[15] Pigasov E.E., Ryabinin V.K., Kovalev Yu.M., “Mathematical Modeling of an Adiabatic Thermal Explosion for a Hydrogen Oxidation Reaction”, Bulletin of the South Ural State University. Series: Mathematical Modelling and Programming, 6:3 (2013), 130–135 (n Russian) | Zbl

[16] Zel'dovich Ya.B., Barenblatt G.I., Librovich B.B., Makhiviladze G.M., Mathematical Theory of Combustion and Explosion, Nauka, M., 1980 (n Russian) | MR

[17] Ibragimova L.B., Smekhov G.D., Shatalov O.P., “Comparative Analysis of the Rate Constants of chemical Reactions Describing Gorenje Hydrogen-Oxygen Mixtures”, Physico-Chemical Kinetics in Gas Dynamics, 8 (2009), 25 pp.

[18] Dimitrov V.I., Simple Kinetics, Nauka, Novosibirsk, 1982 (n Russian)

[19] Babushok V.I. Dakdancha A.N., Test Examples of Modeling the Kinetics of Complex Reactions, Krasnoyarsk, 1990 (n Russian)

[20] Babushok V.I., Krahtinova T.V., Babkin V.S., “The Structure of the Limit of Chain-Thermal Self-Ignition”, Kinetika i kataliz, 25:1 (1984), 5–12 (n Russian)

[21] B.P. Mullins, Studies of the Spontaneous Ignition of Fuels Injected into a Bot Air Stream, NATO AGARD AG S/P2, 1952 | Zbl

[22] R.W. Patch, “Shock-Tube Measurement of Dissociation on Rates of H2-J Chem”, Journal of Chemical Physics, 36:7 (1962), 6 pp. | DOI | MR

[23] R. Porowski, A. Teodorczyk, “Experimental Study on DDT for Hydrogen-Methane-Air Mixtures in Tube with Obstacles”, Journal of Loss Prevention in the Process Industries, 26:2 (2013), 374–379 | DOI

[24] R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics, Springfield: Sandia National Laboratories, 1996