An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 4, pp. 93-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Avalos–Triggiani problem for a system of wave equations and a linear Oskolkov system of non-zero order is investigated. The mathematical model contains a linear Oskolkov system describing the flow of an incompressible viscoelastic Kelvin–Voigt fluid of non-zero order, and a wave vector equation corresponding to some structure immersed in the fluid. Based on the method proposed by the authors of this problem, the existence of a unique solution to the Avalos–Triggiani problem for the indicated systems is proved.
Keywords: Avalos–Triggiani problem, incompressible viscoelastic fluid, linear Oskolkov system.
@article{VYURU_2023_16_4_a6,
     author = {T. G. Sukacheva and A. O. Kondyukov},
     title = {An analysis of the {Avalos{\textendash}Triggiani} problem for the linear {Oskolkov} system of non-zero order and a system of wave equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {93--98},
     year = {2023},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a6/}
}
TY  - JOUR
AU  - T. G. Sukacheva
AU  - A. O. Kondyukov
TI  - An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2023
SP  - 93
EP  - 98
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a6/
LA  - en
ID  - VYURU_2023_16_4_a6
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%A A. O. Kondyukov
%T An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2023
%P 93-98
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a6/
%G en
%F VYURU_2023_16_4_a6
T. G. Sukacheva; A. O. Kondyukov. An analysis of the Avalos–Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 4, pp. 93-98. http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a6/

[1] Avalos G., Lasiecka I., Triggiani R., “Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System”, Georgian Mathematical Journal, 15:3 (2008), 403–437 | DOI | MR | Zbl

[2] Avalos G., Triggiani R., “Backward Uniqueness of the S.C. Semigroup Arising in Parabolic-Hyperbolic Fluid-Structure Interaction”, Differential Equations, 245:3 (2008), 737–761 | DOI | MR | Zbl

[3] Oskolkov A.P., “Initial-Boundary Value Problems for Equations of Motion of Kelvin–Voight Fluids and Oldroyd fluids”, Proceedings of the Steklov Institute of Mathematics, 179 (1989), 137–182

[4] Sviridyuk G.A., Sukacheva T.G., “The Avalos–Triggiani Problem for the Linear Oskolkov System and a System of Wave Equations”, Computational Mathematics and Mathematical Physics, 62:3 (2022), 427–431 | DOI | DOI | MR | Zbl

[5] Sukacheva T.G., Sviridyuk G.A., “The Avalos–Triggiani Problem for the Linear Oskolkov System and a System of Wave Equaions. II”, Journal of Computational and Engineering Mathematics, 9:2 (2022), 67–72 | DOI | MR | Zbl

[6] Oskolkov A.P., “Some Nonstationary Linear and Quasilinear Systems Occurring in the Investigation of the Motion of Viscous Fluids”, Journal of Soviet Mathematics, 10 (1978), 299–335 | DOI | MR | Zbl

[7] Sviridyuk G.A., Sukacheva T.G., “Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type”, Differential Equations, 26:2 (1990), 188–195 | MR | Zbl

[8] Sviridyuk G.A., Sukacheva T.G., “On the Solvability of a Nonstationary Problem Describing the Dynamics of an Incompressible Viscoelastic Fluid”, Mathematical Notes, 63:3 (1998), 388–395 | DOI | DOI | MR | Zbl

[9] Kondyukov A.O., Sukacheva T.G., “Phase Space of the Initial-Boundary Value Problem for the Oskolkov System of Nonzero Order”, Computational Mathematics and Mathematical Physics, 55:5 (2015), 823–828 | DOI | DOI | MR | Zbl

[10] Vasyuchkova K.V., Manakova N.A., Sviridyuk G.A., “Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:4 (2017), 5–14 | DOI | Zbl

[11] Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A., “Multipoint Initial-Final Value for one Class of Sobolev Type Models of Higher Order with Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:3 (2018), 103–117 | DOI | Zbl

[12] Favini A., Zagrebina S.A., Sviridyuk G.A., “Multipoint Initial-Final Value Problems for Dinamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10 | MR