Effective practices of using spatial models in document image classification
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 4, pp. 61-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents a new approach to modelling the structure of document images for classification tasks. Each of the document images is considered as a realization of a stochastic point process. Estimates of the properties of the point process are used to describe the document structure. The main objective of this paper is to determine the type of a new document using a nonparametric classification method. A method of classification of functional properties of point processes based on the concept of statistical depth is proposed. Practical issues of experimentation are considered. Modeling on real data showed the effectiveness of the proposed approach.
Keywords: documents with flexible structure, reproducible point patterns, depth, $DD$-plot, $\alpha$-procedure.
Mots-clés : classification, spatial point process
@article{VYURU_2023_16_4_a3,
     author = {O. A. Slavin and I. M. Janiszewski},
     title = {Effective practices of using spatial models in document image classification},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {61--70},
     year = {2023},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a3/}
}
TY  - JOUR
AU  - O. A. Slavin
AU  - I. M. Janiszewski
TI  - Effective practices of using spatial models in document image classification
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2023
SP  - 61
EP  - 70
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a3/
LA  - en
ID  - VYURU_2023_16_4_a3
ER  - 
%0 Journal Article
%A O. A. Slavin
%A I. M. Janiszewski
%T Effective practices of using spatial models in document image classification
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2023
%P 61-70
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a3/
%G en
%F VYURU_2023_16_4_a3
O. A. Slavin; I. M. Janiszewski. Effective practices of using spatial models in document image classification. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 4, pp. 61-70. http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a3/

[1] Chen Nawei., Blostein D., “A Survey of Document Image Classification: Problem Statement, Classifier Architecture and Performance Evaluation”, International Journal of Document Analysis and Recognition, 10 (2007), 1–16 | DOI

[2] Li Liu, Zhiyu Wang, Taorong Qiu, Qiu Chen, Yue Lu, Ching Y. Suen, “Document Image Classification: Progress Over Two Decades”, Neurocomputing, 453 (2021), 223–240 | DOI

[3] Gaceb D., Eglin V., Lebourgeois F., “Classification of Business Documents for Real-Time Application”, Journal of Real-Time Image Processing, 9:2 (2014), 329–345 | DOI

[4] Slavin O.A., “Using Special Text Points in the Recognition of Documents”, Cyber-Physical Systems: Advances in Design and Modelling, 2020, 43–53 | DOI

[5] Illian J., Penttinen A., Stoyan H., Stoyan D., Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley and Sons, Chichester, 2008 | MR | Zbl

[6] Baddeley A., Rubak E., Turner R., Spatial Point Patterns: Methodology and Applications with R, CRC press, Boca Raton–London–New York, 2015 | MR

[7] Pawlasová K., Dvořák J., “Supervised Nonparametric Classification in the Context of Replicated Point Patterns”, Image Analysis and Stereology, 41:2 (2022), 57–109 | DOI | MR

[8] Baíllo A., Cuevas A., Fraiman R., “Classification Methods for Functional Data”, The Oxford Handbook of Functional Data Analysis, Oxford University Press, Oxford, 2010, 259–297 | MR

[9] Hahn U., “A Studentized Permutation Test for the Comparison of Spatial Point Patterns”, Journal of the American Statistical Association, 107 (2012), 754–764 | DOI | MR | Zbl

[10] Mahalanobis P.C., “On the Generalized Distance in Statistics”, National Institute of Science of India, 2:2 (1936), 49–55 | MR | Zbl

[11] Vardi Y., Cun-Hui Zhang, “The Multivariate $L_1$-Median and Associated Data Depth”, Proceedings of the National Academy of Sciences, 97:4 (2000), 1423–1426 | DOI | MR | Zbl

[12] Zuo Yijun, Serfling R., “General Notions of Statistical Depth Function”, Annals of statistics, 28:2 (2000), 461–482 | DOI | MR | Zbl

[13] Mosler K., Mozharovskyi P., “Fast DD-Classification of Functional Data”, Statistical Papers, 58:4 (2017), 1055–1089 | DOI | MR | Zbl

[14] Li Jun, Cuesta-Albertos J.A., Liu R.Y., “DD-Classifier: Nonparametric Classification Procedure Based on DD-plot”, Journal of the American Statistical Association, 107:498 (2012), 737–753 | DOI | MR | Zbl

[15] Baddeley A., Turner R., “Spatstat: an R Package for Analyzing Spatial Point Patterns”, Journal of Statistical Software, 12:6 (2005), 1–42 | DOI | MR

[16] Pokotylo O., Mozharovskyi P., Dyckerhoff R., “Depth and Depth-Based Classification with R-Package Ddalpha”, Journal of Statistical Software, 91:5 (2019), 1–46 | DOI