@article{VYURU_2023_16_4_a2,
author = {Youssra Bakkali and Mhamed El Merzguioui and Abdelhadi Akharif and Abdellah Azmani},
title = {Forecasting stock return volatility using the {Realized} {GARCH} model and an artificial neural network},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {45--60},
year = {2023},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a2/}
}
TY - JOUR AU - Youssra Bakkali AU - Mhamed El Merzguioui AU - Abdelhadi Akharif AU - Abdellah Azmani TI - Forecasting stock return volatility using the Realized GARCH model and an artificial neural network JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 45 EP - 60 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a2/ LA - en ID - VYURU_2023_16_4_a2 ER -
%0 Journal Article %A Youssra Bakkali %A Mhamed El Merzguioui %A Abdelhadi Akharif %A Abdellah Azmani %T Forecasting stock return volatility using the Realized GARCH model and an artificial neural network %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 45-60 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a2/ %G en %F VYURU_2023_16_4_a2
Youssra Bakkali; Mhamed El Merzguioui; Abdelhadi Akharif; Abdellah Azmani. Forecasting stock return volatility using the Realized GARCH model and an artificial neural network. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 4, pp. 45-60. http://geodesic.mathdoc.fr/item/VYURU_2023_16_4_a2/
[1] Engle R.F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrica, 50 (1982), 987–1007 | DOI | MR | Zbl
[2] Bollerslev T., “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, 31:3 (1986), 307–327 | DOI | MR | Zbl
[3] Nelson D.B., “Conditional Heteroskedasticity in Asset Returns: a New Approach”, Econometrica, 59:2 (1991), 347–370 | DOI | MR | Zbl
[4] Eryilmaz F.M., “Modelling Stock Market Volatility: The Case of Bist-100”, International Journal of Commerce and Finance, 2:1 (2015), 37–53 | MR
[5] Andersen T.G., Bollerslev T., Diebold F.X., Ebens H., “The Distribution of Realized Stock Return Volatility”, Journal of Financial Economics, 61:1 (2001), 43–76 | DOI
[6] Barndorff-Nielsen O.E., Shephard N., “Econometric Analysis of Realized Volatility and Its Use in Estimating Stochastic Volatility Models”, Journal of the Royal Statistical Society, 64:2 (2002), 253–280 | DOI | MR | Zbl
[7] Hansen P.R., Zhuo Huang, Shek H.H., “Realized GARCH: a Joint Model for Returns and Realized Measures of Volatility”, Journal of Applied Econometrics, 27:6 (2012), 877–906 | DOI | MR
[8] Barndorff-Nielsen O.E., Shephard N., “Power and Bipower Variation with Stochastic Volatility and Jumps”, Journal of Financial Econometrics, 2:1 (2004), 1–48 | DOI
[9] Lee S.S., Mykland P.A., “Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics”, Review of Financial Studies, 21:6 (2008), 2535–2563 | DOI | MR
[10] Ait-Sahalia Y., Mancini L., “Out of Sample Forecasts of Quadratic Variation”, Journal of Econometrics, 147:1 (2008), 17–33 | DOI | MR | Zbl
[11] Boudt K., Boudt P., Brian G., Croux C., “Estimation and Decomposition of Downside Risk for Portfolios with Non-Normal Returns”, Journal of Risk, 11:2 (2008), 79–103 | DOI
[12] Corsi F., “A Simple Long Memory Model of Realized Volatility”, Journal of Financial Econometrics, 7:2 (2009), 174–196 | DOI
[13] Zhang P., Patuwo E., Hu M., “Forecasting With Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, 14:1 (1998), 35–62 | DOI
[14] Fausett L., Fundamentals of Neural Network, Prentice-Hall, Hoboken, 1994
[15] Xunfa Lu, Danfeng Que, Guangxi Cao, “Volatility Forecast Based on the Hybrid Artificial Neural Network and GARCH-type Models”, Procedia Computer Science, 91 (2016), 1044–1049 | DOI
[16] Vortelinos D.I., “Forecasting Realized Volatility: HAR Against Principal Components Combining Neural Networks and GARCH”, Research in International Business and Finance, 39 (2017), 824–839 | DOI
[17] Arnerić J., Šestanović T., Teai J., “Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data”, Business Systems Research Journal, 9:2 (2018), 18–34 | DOI
[18] Huang Shih-Feng, Chiang Hsin-Han, Lin Yu-Jun, “A Network Autoregressive Model with GARCH Effects and its Applications”, The Public Library of Science One, 16:7 (2021), e0255422 | DOI
[19] Granger C., “Investigating Causal Relations by Econometric Models and Cross-spectral Methods”, Econometrica, 37:3 (1969), 424–438 | DOI | Zbl
[20] Funahashi K., “On the Approximate Realization of Continuous Mappings by Neural Networks”, Neural Networks, 2:3 (1989), 183–192 | DOI
[21] Hornik K., Stinchcombe M., White H., “Universal Approximation of an Unknown Mapping and its Derivatives Using Multilayer Feedforward Networks”, Neural Networks, 3:5 (1990), 551–560 | DOI | MR