@article{VYURU_2023_16_3_a4,
author = {A. V. Buevich and M. A. Sagadeeva and S. A. Zagrebina},
title = {Stability of a stationary solution to one class of non-autonomous {Sobolev} type equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {65--73},
year = {2023},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a4/}
}
TY - JOUR AU - A. V. Buevich AU - M. A. Sagadeeva AU - S. A. Zagrebina TI - Stability of a stationary solution to one class of non-autonomous Sobolev type equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 65 EP - 73 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a4/ LA - en ID - VYURU_2023_16_3_a4 ER -
%0 Journal Article %A A. V. Buevich %A M. A. Sagadeeva %A S. A. Zagrebina %T Stability of a stationary solution to one class of non-autonomous Sobolev type equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 65-73 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a4/ %G en %F VYURU_2023_16_3_a4
A. V. Buevich; M. A. Sagadeeva; S. A. Zagrebina. Stability of a stationary solution to one class of non-autonomous Sobolev type equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 3, pp. 65-73. http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a4/
[1] Sviridyuk G.A., Manakova N.A., “Nonclassical Mathematical Physics Models. Phase Space of Semilinear Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 8:3 (2016), 31–51 (in Russian) | DOI | Zbl
[2] Al'shin A.B., Korpusov M.O., Sveshnikov A.G., Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011 | MR | Zbl
[3] Sell G.R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971 | MR | Zbl
[4] Demidenko G.V., Uspenskii S.V., Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker Inc, New York–Basel–Hong Kong, 2003 | MR | Zbl
[5] Sviridyuk G.A., Fedorov V.E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR | Zbl
[6] Keller A.V., “The Leontief's Type Systems: Classes of Problems with the Showalter – Sidorov Intial Condition and Numerical Solving”, The Bulletin of Irkutsk State University. Series Mathematics, 3:2 (2010), 30–43 (in Russian) | Zbl
[7] Sviridyuk G.A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl
[8] Sagadeeva M.A., Investigation of Solutions Stability for Linear Sobolev Type Equations, PhD (Math) Thesis, Chelyabinsk, 2006 (in Russian) | MR
[9] Sagadeeva M.A., “Degenerate Flows of Solving Operators for Nonstationary Sobolev Type Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 9:1 (2017), 22–30 (in Russian) | DOI | Zbl
[10] Zagrebina S.A., Moskvicheva P.O., Stability in Hoff Models, LAMBERT Academic Publishing, Saarbrucken, 2012 (in Russian)
[11] Moskvicheva P.O., “Stability of the Evolutionary Linear Sobolev Type Equation”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 9:3 (2017), 13–17 (in Russian) | DOI | Zbl