Recovering of the heat transfer coefficient from the temperature measurements
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 3, pp. 51-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An inverse analysis is used to recover the heat transfer coefficient in heat conduction problems from boundary measurement of the temperature. The numerical scheme is based on the finite element method in the space variables, the method of finite differences in time, and a special iteration scheme to determine the heat transfer coefficients on each time step. The heat transfer coefficients is sought in the form of a finite segment of a series with unknown Fourier coefficients depending on time. The algorithm for solving the problem relies on theoretical results stating that this problem is well-posed and can be reduced to an operator equation with a contraction. The results of numerical experiments confirm theoretical arguments that this problem is indeed well-posed. The obtained results reveal the accuracy, efficiency, and robustness of the proposed algorithm. It is stable under random perturbations of the data.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
inverse problem, heat and mass transfer.
Mots-clés : heat transfer coefficient, parabolic equation
                    
                  
                
                
                Mots-clés : heat transfer coefficient, parabolic equation
@article{VYURU_2023_16_3_a3,
     author = {S. N. Shergin and S. G. Pyatkov},
     title = {Recovering of the heat transfer coefficient from the temperature measurements},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a3/}
}
                      
                      
                    TY - JOUR AU - S. N. Shergin AU - S. G. Pyatkov TI - Recovering of the heat transfer coefficient from the temperature measurements JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 51 EP - 64 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a3/ LA - en ID - VYURU_2023_16_3_a3 ER -
%0 Journal Article %A S. N. Shergin %A S. G. Pyatkov %T Recovering of the heat transfer coefficient from the temperature measurements %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 51-64 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a3/ %G en %F VYURU_2023_16_3_a3
S. N. Shergin; S. G. Pyatkov. Recovering of the heat transfer coefficient from the temperature measurements. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 3, pp. 51-64. http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a3/
