Models with uncertain volatility
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 3, pp. 5-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Models in which volatility is one of the possible trajectories are considered in the paper. As an example of a model with a certain volatility, the Black–Scholes model is considered. As an example of models with uncertain volatility three models are considered: the Heston model with random trajectories and two models with deterministic trajectories from a confidence set of possible trajectories. Three computational methods are proposed for finding the range of fair prices for a European option. The first method is based on solving viscosity equations using difference schemes. The second is the Monte– Carlo method, which is based on the simulation of the initial stock price process. The third is the tree method, which is based on approximating the original continuous model with a discrete model and obtaining recurrent formulas on a binary tree to calculate the upper and lower prices. The results of calculations using the listed methods are presented. It is shown that the ranges of fair prices obtained using the three numerical methods practically coincide.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Black–Scholes model, Heston model, uncertain volatility, viscosity equation
Mots-clés : option, fair price.
                    
                  
                
                
                Mots-clés : option, fair price.
@article{VYURU_2023_16_3_a0,
     author = {G. I. Beliavsky and N. V. Danilova},
     title = {Models with uncertain volatility},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a0/}
}
                      
                      
                    TY - JOUR AU - G. I. Beliavsky AU - N. V. Danilova TI - Models with uncertain volatility JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 5 EP - 19 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a0/ LA - ru ID - VYURU_2023_16_3_a0 ER -
%0 Journal Article %A G. I. Beliavsky %A N. V. Danilova %T Models with uncertain volatility %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 5-19 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a0/ %G ru %F VYURU_2023_16_3_a0
G. I. Beliavsky; N. V. Danilova. Models with uncertain volatility. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 3, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURU_2023_16_3_a0/
