Mots-clés : divergent form
@article{VYURU_2023_16_2_a8,
author = {V. E. Karpov and A. I. Lobanov},
title = {Grid-characteristic difference scheme for solving the {Hopf} equation based on two different divergent forms},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {91--103},
year = {2023},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a8/}
}
TY - JOUR AU - V. E. Karpov AU - A. I. Lobanov TI - Grid-characteristic difference scheme for solving the Hopf equation based on two different divergent forms JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 91 EP - 103 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a8/ LA - ru ID - VYURU_2023_16_2_a8 ER -
%0 Journal Article %A V. E. Karpov %A A. I. Lobanov %T Grid-characteristic difference scheme for solving the Hopf equation based on two different divergent forms %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 91-103 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a8/ %G ru %F VYURU_2023_16_2_a8
V. E. Karpov; A. I. Lobanov. Grid-characteristic difference scheme for solving the Hopf equation based on two different divergent forms. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 91-103. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a8/
[1] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Fizmatlit, M., 2012 (in Russian)
[2] Godunov S.K., “A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations”, Matematicheskii Sbornik, 47(89):3 (1959), 271–306 (in Russian) | Zbl
[3] Guzhev D.S., Kalitkin N.N., “Burgers Equation is a Test for Numerical Methods”, Mathematical Models and Computer Simulation, 7:4 (1995), 99–127 (in Russian) | MR
[4] Fedorenko R.P., “The Application of Difference Schemes of High Accuracy to the Numerical Solution of Hyperbolic Equations”, USSR Computational Mathematics and Mathematical Physics, 2:6 (1963), 1355–1365 | DOI | MR | Zbl
[5] Magomedov K.M., Kholodov A.S., Grid-and-Characteristics Numerical Methods, Yurait, M., 2017 (in Russian) | MR
[6] Tolstykh A.I., Compact and High-Precision Multi-Operator Approximations for Partial Differential Equations, Nauka, M., 2015 (in Russian)
[7] Rogov B.V., Mikhailovskaya M.N., “The Monotonic Bicompact Schemes for a Linear Transfer Equation”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[8] Aristova E.N., Baydin D.F., Rogov B.V., “Bicompact Scheme for Linear Inhomogeneous Transport Equation”, Mathematical Models and Computer Simulations, 5:6 (2013), 586–594 | DOI | MR | Zbl
[9] Goloviznin V.M., Chetverushkin B.N., “New Generation Algorithms for Computational Fluid Dynamics”, Computational Mathematics and Mathematical Physics, 58:8 (2018), 1217–1225 | DOI | DOI | MR | Zbl
[10] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Lecture Notes in Mathematics, Springer–Verlag, Berlin, 1998, 151–268 | DOI | MR | Zbl
[11] Kholodov A.S., “Construction of Difference Schemes with Positive Approximation for Hyperbolic Equations”, USSR Computational Mathematics and Mathematical Physics, 18:6 (1978), 116–132 | DOI | MR | Zbl
[12] Kholodov A.S., Kholodov Ya.A., “Monotonicity Criteria for Difference Schemes Designed for Hyperbolic Equations”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1560–1588 | DOI | MR
[13] Fedorenko R.P., Introduction to Computational Physics, Intellekt, Dolgoprudny, 2009 (in Russian)
[14] I.V. Basharov, A.I. Lobanov, “On the Finite Difference Schemes for Burgers Equation Solution”, Smart Modelling for Engineering Systems, 215, Singapore, 2021, 151–167 | DOI | MR
[15] Whitham G.B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974 | MR | Zbl
[16] Kriksin Yu.A., Kuchugov P.A., Ladonrina M.E., Neklyudova O.A., Tishkin V.F., “Construction of Exact Solutions of Some Equations of Hyperbolic Type Containing a Discontinuity Propagating over an Inhomogeneous Background”, Keldysh Institute Preprints, 2018, 017, 14 pp. (in Russian) | DOI