Computer modelling of non-stationary flows with phase transitions in countercurrent heat exchangers
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 59-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems of mathematical and numerical modeling of non-stationary processes of heat and mass transfer in countercurrent heat exchangers with phase transitions in heat carriers are discussed. A one-dimensional problem statement with spatially distributed flow parameters (temperature, density, velocity, heat transfer coefficient) is considered. A method for determining the two-phase zone of the vapor-liquid state and a method for calculating its parameters is proposed. Examples of numerical simulation for a specific heat exchanger with heat carriers in the form of air and liquid oxygen, which boils during the flow are given. The influence of the heat transfer coefficient on the length of the boiling zone is shown, which in turn has a significant effect on the heat transfer process and, accordingly, on the temperature distribution in the coolant flows. In the end, this significantly affects the operation of the heat exchanger.
Keywords: mathematical modelling, numerical simulation, phase transition counterflow heat exchanger
Mots-clés : heat transfer coefficient.
@article{VYURU_2023_16_2_a5,
     author = {V. K. Tolstykh and K. A. Pshenychnyi},
     title = {Computer modelling of non-stationary flows with phase transitions in countercurrent heat exchangers},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {59--67},
     year = {2023},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a5/}
}
TY  - JOUR
AU  - V. K. Tolstykh
AU  - K. A. Pshenychnyi
TI  - Computer modelling of non-stationary flows with phase transitions in countercurrent heat exchangers
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2023
SP  - 59
EP  - 67
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a5/
LA  - ru
ID  - VYURU_2023_16_2_a5
ER  - 
%0 Journal Article
%A V. K. Tolstykh
%A K. A. Pshenychnyi
%T Computer modelling of non-stationary flows with phase transitions in countercurrent heat exchangers
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2023
%P 59-67
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a5/
%G ru
%F VYURU_2023_16_2_a5
V. K. Tolstykh; K. A. Pshenychnyi. Computer modelling of non-stationary flows with phase transitions in countercurrent heat exchangers. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 59-67. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a5/

[1] Minenko A.S., Radevich E.V., “Approximate Analysis of the Convective Stefan Problem”, Informatics and Cybernetics, 2017, no. 3(9), 100–105 (in Russian)

[2] Kot V.A., “A New Approach to Approximate Solution of the Stefan Problem with a Convective Boundary Condition”, Doklady of the National Academy of Sciences of Belarus, 64:4 (2020), 495–505 (in Russian)

[3] Tolstykh V.K., Pshenychnyi K.A., “Mathematical Modelling of Unsteady Heat Processes in Countercurrent Heat Exchangers”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Upravlenie, Vychislitel'naya Tekhnika i Informatika, 2020, no. 1, 55–62 (in Russian)

[4] Butterwoth D., Hewitt G.F., Two-phase and Heat Transfer, Oxford University Press, Oxford–New York, 1977

[5] Kutateladze S.S., Heat Transfer During Condensation and Boiling, Meshgiz, M., 1952

[6] Grigir'ev V.A., Krokhin Yu.I., Heat and Mass Transfer Devices of Cryogenic Equipment, M., 1982

[7] Alekseev V.P., Calculation and Modeling of Cryogenic Plant Apparatuses, Energoatomizdat, Leningradskoe otdelenie, L., 1987

[8] Kreith F., Black W.Z., Basic Heat Transfer, Harper and Row, New York–Cambridge–Hagerstown–Philadelphia–San Francisco–London–Mexico–Sao Paulo–Sydney, 1983

[9] Baskakov A.P., Berg B.V., Vitt O.K., Heat Engineering, Energoatomizdat, M., 1991

[10] Volkov M.G., “Oil–Water–Gas Flow Calculations in Vertical Wells”, Problems of Collecting, Preparing and Transporting Oil and Petroleum Products, 2017, no. 3, 9–42 (in Russian)

[11] Ivashnev O.E., “About the Features of Modeling the Flows of a Boiling Liquid”, Fluid Dynamics, 43:3 (2008), 64–76 | DOI | Zbl

[12] Samarskii A.A., Theory of Difference Schemes, Nauka, M., 1977

[13] Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M., Numerical Methods, Fizmatlit, Laboratoriya bazovykh znaniy, M., 2002 | MR

[14] Sychev V.V., Vasserman A.A., Kozlov A.D., Spiridonov G.A., Tsymarnyi V.A., Oxygen Thermodynamic Properties, Izdatel'stvo standartov, M., 1981

[15] Vargaftik N.B., Handbook on Thermophysical Properties of Gases And Liquids, Nauka, M., 1972