Travelling breaking waves
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 49-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a mathematical model of coastal waves in the shallow water approximation. The model contains two empirical parameters. The first one controls turbulent dissipation. The second one is responsible for the turbulent viscosity and is determined by the turbulent Reynolds number. We study travelling waves solutions to this model. The existence of an analytical and numerical solution to the problem in the form of a traveling wave is shown. The singular points of the system are described. It is shown that there exists a critical value of the Reylnols number corresponding to the transition from a monotonic profile to an oscillatory one. The paper is organized as follows. First, we present the governing system of ordinary differential equations (ODE) for travelling waves. Second, the Lyapunov function for the corresponding ODE system is derived. Finally, the behavior of the solution to the ODE system is discussed.
Keywords: shallow-water equation, Lyapunov function, Reynolds number, travelling wave solution.
@article{VYURU_2023_16_2_a4,
     author = {N. M. Koshkarbayev},
     title = {Travelling breaking waves},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {49--58},
     year = {2023},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/}
}
TY  - JOUR
AU  - N. M. Koshkarbayev
TI  - Travelling breaking waves
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2023
SP  - 49
EP  - 58
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/
LA  - en
ID  - VYURU_2023_16_2_a4
ER  - 
%0 Journal Article
%A N. M. Koshkarbayev
%T Travelling breaking waves
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2023
%P 49-58
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/
%G en
%F VYURU_2023_16_2_a4
N. M. Koshkarbayev. Travelling breaking waves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 49-58. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/

[1] Salmon R., Lectures on Geophysical Fluid Mechanics, Oxford University Press, New York–Oxford, 1998 | MR

[2] Stoker J.J., Water Waves: the Mathematical Theory with Applications, Interscience, New York, 1957 | MR | Zbl

[3] Lannes D., The Water Waves Problem: Mathematical Analysis and Asymptotics, American Mathematical Society, Providence, 2013 | DOI | MR | Zbl

[4] Whitham G.B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974 | MR | Zbl

[5] Cienfuegos R., Barthelemy E., Bonneton P., “Wave-Breaking Model for Boussinesq-Type Equations Including Roller Effects in the Mass Conservation Equation”, Journal of Waterway, Port, Coastal and Ocean Engineering, 136:1 (2010), 10–26 | DOI

[6] Freeman J.C., Lemehaute B., “Wave Breakers on a Beach and Surges in a Dry Bed”, Journal of Hydraulic Engineering, 90 (1964), 187–216

[7] Karambas T.V., Tozer N.P., “Breaking Waves in the Surf and Swash Zone”, Journal of Coastal Research, 19 (2003), 514–528 | DOI

[8] Kazakova M., Richard G.L., “A New Model of Shoaling and Breaking Waves: One-Dimensional Solitary Wave on a Mild Sloping Beach”, Journal of Fluid Mechanics, 862 (2019), 552–591 | DOI | MR | Zbl

[9] Richard G.L., Duran A., Fabrèges B., “A New Model of Shoaling and Breaking Waves: Part 2. Run-up and Two-Dimensional Waves”, Journal of Fluid Mechanics, 867 (2019), 146–194 | DOI | MR | Zbl

[10] Richard G.L., Gavrilyuk S.L., “A New Model of Roll Waves: Comparison with Brock's Experiments”, Journal of Fluid Mechanics, 698 (2012), 374–405 | DOI | MR | Zbl

[11] Richard G.L., Gavrilyuk S.L., “The Classical Hydraulic Jump in a Model of Shear Shallow-Water Flows”, Journal of Fluid Mechanics, 725 (2013), 492–521 | DOI | MR | Zbl

[12] Richard G.L., Gavrilyuk S.L., “Modelling Turbulence Generation in Solitary Waves on Shear Shallow Water Flows”, Journal of Fluid Mechanics, 773 (2015), 49–74 | DOI | MR | Zbl

[13] Gavrilyuk S.L., Liapidevskii V.Yu., Chesnokov A.A., “Spilling Breakers in Shallow Water: Applications to Favre Waves and to the Shoaling and Breaking of Solitary Wave”, Journal of Fluid Mechanics, 808 (2016), 441–468 | DOI | MR | Zbl

[14] Chesnokov A.A., Gavrilyuk S.L., Liapidevskii V.Yu., “Mixing and Nonlinear Internal Waves in a Shallow Flow of a Three-Layer Stratified Fluid”, Physics of Fluids, 34:7 (2022), 075104, 16 pp. | DOI