Travelling breaking waves
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 49-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a mathematical model of coastal waves in the shallow water approximation. The model contains two empirical parameters. The first one controls turbulent dissipation. The second one is responsible for the turbulent viscosity and is determined by the turbulent Reynolds number. We study travelling waves solutions to this model. The existence of an analytical and numerical solution to the problem in the form of a traveling wave is shown. The singular points of the system are described. It is shown that there exists a critical value of the Reylnols number corresponding to the transition from a monotonic profile to an oscillatory one. The paper is organized as follows. First, we present the governing system of ordinary differential equations (ODE) for travelling waves. Second, the Lyapunov function for the corresponding ODE system is derived. Finally, the behavior of the solution to the ODE system is discussed.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
shallow-water equation, Lyapunov function, Reynolds number, travelling wave solution.
                    
                    
                    
                  
                
                
                @article{VYURU_2023_16_2_a4,
     author = {N. M. Koshkarbayev},
     title = {Travelling breaking waves},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/}
}
                      
                      
                    TY - JOUR AU - N. M. Koshkarbayev TI - Travelling breaking waves JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 49 EP - 58 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/ LA - en ID - VYURU_2023_16_2_a4 ER -
%0 Journal Article %A N. M. Koshkarbayev %T Travelling breaking waves %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 49-58 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/ %G en %F VYURU_2023_16_2_a4
N. M. Koshkarbayev. Travelling breaking waves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 49-58. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a4/
