Mots-clés : invariant sets
@article{VYURU_2023_16_2_a3,
author = {V. D. Irtegov and T. N. Titorenko},
title = {On the qualitative analysis of a family of differential equations with first integrals of degree more then 2},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {37--48},
year = {2023},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a3/}
}
TY - JOUR AU - V. D. Irtegov AU - T. N. Titorenko TI - On the qualitative analysis of a family of differential equations with first integrals of degree more then 2 JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2023 SP - 37 EP - 48 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a3/ LA - ru ID - VYURU_2023_16_2_a3 ER -
%0 Journal Article %A V. D. Irtegov %A T. N. Titorenko %T On the qualitative analysis of a family of differential equations with first integrals of degree more then 2 %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2023 %P 37-48 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a3/ %G ru %F VYURU_2023_16_2_a3
V. D. Irtegov; T. N. Titorenko. On the qualitative analysis of a family of differential equations with first integrals of degree more then 2. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 37-48. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a3/
[1] Oparina E.I., Troshkin O.V., “Stability of Kolmogorov Flow in a Channel with Rigid Walls”, Doklady Physics, 49:10 (2004), 583–587 | DOI | MR
[2] H.M. Yehia, “New Generalizations of the Integrable Problems in Rigid Body Dynamics”, Journal of Physics A: Mathematical and General, 30:20 (1997), 7269–7275 | DOI | MR | Zbl
[3] H.M. Yehia, “New Generalizations of all the Known Integrable Problems in Rigid-Body Dynamics”, Journal of Physics A: Mathematical and General, 32:43 (1999), 7565–7580 | DOI | MR | Zbl
[4] Borisov A.V., Mamaev I.S., Rigid Body Dynamics. Hamiltonian Methods, Integrablity, Chaos, Institute of Computer Science, M., 2005 (in Russian) | MR
[5] E.J. Routh, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, MacMillan, London, 1905 | MR
[6] Lyapunov A.M., “On the Permanent Helical Motions of a Rigid Body in Fluid”, Collected Works, v. 1, 1954, 276–319 (in Russian)
[7] Salvadori L., “Sulla Stabilita del Movimento”, Matematiche, 24:1 (1969), 218–239 | MR | Zbl
[8] Irtegov V.D., Titorenko T.N., “About Stationary Movements of the Generalized Kovalevskaya Top and their Stability”, Mechanics of Solids, 54:1 (2019), 81–91 | DOI | DOI
[9] Irtegov V.D., Titorenko T.N., “On the Qualitative Analysis of the Equations of Motion of a Rigid Body in a Magnetic Field”, Journal of Applied and Industrial Mathematics, 16:1 (2022), 58–69 | DOI | MR | Zbl
[10] Yehia H.M., “New Solutions of the Problem on the Motion of a Gyrostat in Potential and Magnetic Fields”, Proceedings of Moscow University. Series: Mathematics and Mechanics, 1985, no. 5, 60–63 (in Russian) | MR
[11] Irtegov V.D., Titorenko T.N., “Computer Algebra Methods in the Study of Nonlinear Differential Systems”, Computational Mathematics and Mathematical Physics, 53:6 (2013), 845–857 | DOI | DOI | MR | Zbl
[12] Irtegov V.D., Titorenko T.N., “The Invariant Manifolds of Systems with First Integrals”, Journal of Applied Mathematics and Mechanics, 73:4 (2009), 379–384 | DOI | MR | Zbl
[13] Irtegov V.D., Titorenko T.N., “Invariant Manifolds in the Clebsch–Tisserand–Brun Problem”, Journal of Applied Mathematics and Mechanics, 76:3 (2012), 268–274 | DOI | MR | Zbl
[14] Lyapunov A.M., The General Problem of the Stability of Motion, Taylor and Francis, London, 1992 | MR | MR | Zbl