The qualitative regularities of the eutrophication process of a shallow water research based on a biological kinetics mathematical model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 14-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to modeling the processes of eutrophication of a shallow water body on a computer system with distributed memory. The proposed mathematical model of biological kinetics is based on a system of non-stationary convection-diffusion-reaction equations with non-linear terms, takes into account the movement of water flow, gravitational settling of impurities, microturbulent diffusion, decomposition of detritus as a result of the activity of aerobic and anaerobic bacteria. The introduction of a non-linear dependence of the growth rate of phytoplankton and bacteria allows to describe the production-destruction processes in a reservoir, to control their dynamics under conditions of excessive intake of biogenic substances (nitrogen, phosphorus and silicon compounds), sulfur compounds, including hydrogen sulfide and sulfates, under various oxygen distribution modes, detritus, spatial and temporal variability of illumination, salinity and temperature, which corresponds to modern ideas about the functioning of the hydrobiocenosis of a shallow water body. The linearization of the continuous problem is carried out, its discrete analogue is constructed from the linearized model based on the splitting of the original three-dimensional problem into two-dimensional and one-dimensional. To build a discrete two-dimensional model, a linear combination of Upwind and Standard Leapfrog difference schemes was used, considering the partial filling of the calculation cells, which allowed to increase the accuracy of modeling the studied processes and phenomena. The results of diagnostic modeling of the processes of hydrogen sulfide contamination and self-purification of a shallow reservoir are presented.
Keywords: Azov Sea, eutrophication, mathematical modelling, explicit-implicit difference scheme, approximation error, distributed memory computing system.
Mots-clés : computational domain decomposition
@article{VYURU_2023_16_2_a1,
     author = {Yu. V. Belova and E. O. Rahimbaeva and V. N. Litvinov and A. E. Chistyakov and A. V. Nikitina and A. M. Atayan},
     title = {The qualitative regularities of the eutrophication process of a shallow water research based on a biological kinetics mathematical model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {14--27},
     year = {2023},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a1/}
}
TY  - JOUR
AU  - Yu. V. Belova
AU  - E. O. Rahimbaeva
AU  - V. N. Litvinov
AU  - A. E. Chistyakov
AU  - A. V. Nikitina
AU  - A. M. Atayan
TI  - The qualitative regularities of the eutrophication process of a shallow water research based on a biological kinetics mathematical model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2023
SP  - 14
EP  - 27
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a1/
LA  - ru
ID  - VYURU_2023_16_2_a1
ER  - 
%0 Journal Article
%A Yu. V. Belova
%A E. O. Rahimbaeva
%A V. N. Litvinov
%A A. E. Chistyakov
%A A. V. Nikitina
%A A. M. Atayan
%T The qualitative regularities of the eutrophication process of a shallow water research based on a biological kinetics mathematical model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2023
%P 14-27
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a1/
%G ru
%F VYURU_2023_16_2_a1
Yu. V. Belova; E. O. Rahimbaeva; V. N. Litvinov; A. E. Chistyakov; A. V. Nikitina; A. M. Atayan. The qualitative regularities of the eutrophication process of a shallow water research based on a biological kinetics mathematical model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 16 (2023) no. 2, pp. 14-27. http://geodesic.mathdoc.fr/item/VYURU_2023_16_2_a1/

[1] Petrovskii S., Sekerci Y., Venturino E., “Regime Shifts and Ecological Catastrophes in a Model of Plankton-Oxygen Dynamics under the Climate Change”, Journal of Theoretical Biology, 424:13 (2017), 91–109 | DOI | MR | Zbl

[2] Komilov F.S., Mirzoev S.H., Akobirzoda F., “Accounting for the Hydro-Climatic and Physico-Chemical Characteristics of the Fish Pond Ecosystem in Its Computer Modeling”, Bulletin of the Tajik National University. Series: Natural Sciences, 156:1-1 (2015), 19–27 (in Russian)

[3] Vinogradov M.E., Nalbandov Yu.R., “Effect of Water Density Changes on the Distribution Of Physical, Chemical and Biological Characteristics in the Pelagic Ecosystem of the Black Sea”, Oceanology, 30:5 (1990), 567–573

[4] Samarskij A.A., Vabishhevich P.N., Numerical Methods for Solving Convection-Diffusion Problems, URSS, M., 2009 (in Russian)

[5] A.I. Sukhinov, A.E. Chistyakov, E.V. Alekseenko, “Numerical Realization of Three-Dimensional Model of Hydrodynamics for Shallow Water Basins on High-Performance System”, Mathematical Models and Computer Simulations, 23:3 (2011), 3–21 | DOI | MR | Zbl

[6] Goloviznin V.M., Samarskij A.A., “Some Properties of the Difference Cabaret Scheme”, Mathematical Modelling, 1:1 (1998), 101–116 (in Russian) | Zbl

[7] K. Fennel, “The Generation of Phytoplankton Patchiness by Mesoscale Current Patterns”, Ocean Dynamics, 52:2 (2001), 58–70 | DOI

[8] Yu.V. Tyutyunov, A.D. Zagrebneva, A.I. Azovsky, “Spatiotemporal Pattern Formation in a Prey-Predator System: the case Study of Short-Term Interactions between Diatom Microalgae and Microcrustaceans”, Mathematics, 8:7 (2020), 1065–1080 | DOI

[9] A.I. Sukhinov, A.E. Chistyakov, G.A. Ugol'nitskii, A.B. Usov, A.V. Nikitina, M.V. Puchkin, I.S. Semenov, “Game-Theoretic Regulations for Control Mechanisms of Sustainable Development for Shallow Water Ecosystems”, Automation and Remote Control, 78:6 (2017), 1059–1071 | DOI | MR | Zbl

[10] Chetverushkin B.N., “Limits of Detail and Formulation of Continuum Equation Models”, Mathematical Models and Computer Simulations, 5:3 (2013), 266–279 | DOI | MR

[11] E.V. Yakushev, O.I. Podymov, V.K. Chasovnikov, “Seasonal Changes in the Hydrochemical Structure of the Black Sea Redox Zone”, Oceanography, 18:2 (2005), 48–55 | DOI

[12] E.R. Weiner, Application of Environmental Chemistry: a Practical Guide for Environmental Professionals, CRC Press, Boca Raton–London–New York–Washington, 2000

[13] P. Treguer, L. Legendre, R. Rivkin, O. Ragueneau, N. Dittert, “Water Column Biogeochemistry Below the Euphotic Zone”, Ocean Biogeochemistry, Springer–Verlag, Berlin, 2003, 145–156 | DOI

[14] Cauwet G., “Determination of dissolved Organic Carbon and Nitrogen by High Temperature Combustion”, Methods of Seawater Analysis, Willey-VCH Verlag, Weinheim, 1999, 407–117 | DOI

[15] Sukhinov A.I., Chistyakov A.E., Sidoryakina V.V., Protsenko S.V., “Economical Explicit-Implicit Schemes for Solving Multidimensional Diffusion-Convection Problems”, Journal of Applied Mechanics and Technical Physics, 61:7 (2020), 1257–1267 | DOI | MR | Zbl

[16] Sukhinov A., Chistyakov A., Kuznetsova I., Belova Y., Rahimbaeva E., “Development and Research of a Modified Upwind Leapfrog Scheme for Solving Transport Problems”, Mathematics, 10:19 (2022), 11 pp. | DOI

[17] Samarskii A.A., Vabischevich P.N., Numerical Methods for Solving Convection-Diffusion Problems, Education, 1998 | MR

[18] Ecological Atlas of the Azov Sea (in Russian) (accessed on 20.02.2023)