Methods for studying the stability and stabilization of some systems with large delay
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 99-108
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article is devoted to the study of the properties of systems of differential equations containing a large (in particular, linear) delay. Systems with linear delay have a fairly wide application in biology, in particular, in modelling the distribution of cells in body tissues, as well as in the theory of neural networks. Equations of this type are also found in problems of physics and mechanics, where an important point is the asymptotic behavior of the solution (in particular, the asymptotic stability). When such systems are unstable, the problem of stabilization arises. The optimal stabilization algorithm is based on an union of stabilization of systems of ordinary differential equations and further difference systems. This algorithm is quite simply implemented using numerical methods for solving systems of differential equations with a delay and solving matrix equations. We developed a program that allows quite effectively find a control effect that stabilizes some systems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
delay, stability, stabilization.
                    
                  
                
                
                @article{VYURU_2022_15_4_a8,
     author = {B. G. Grebenshchikov and A. B. Lozhnikov},
     title = {Methods for studying the stability and stabilization of some systems with large delay},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a8/}
}
                      
                      
                    TY - JOUR AU - B. G. Grebenshchikov AU - A. B. Lozhnikov TI - Methods for studying the stability and stabilization of some systems with large delay JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 99 EP - 108 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a8/ LA - ru ID - VYURU_2022_15_4_a8 ER -
%0 Journal Article %A B. G. Grebenshchikov %A A. B. Lozhnikov %T Methods for studying the stability and stabilization of some systems with large delay %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 99-108 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a8/ %G ru %F VYURU_2022_15_4_a8
B. G. Grebenshchikov; A. B. Lozhnikov. Methods for studying the stability and stabilization of some systems with large delay. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 99-108. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a8/
